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ELECTRICITY D
__R'AND

MAGNETISM

Including NEP- 2020 Syllabus

RaJ endra Kumar Ahirrao
> Vijay Pawar
' Narender Paul

Course Title: Physics-1, Electricity,
Magnetism & Properties of Matter

Rationale:  This course is basic physics in the field of
Electricity, Magnetism & Properties of Matter. The
course will emphasize the fundamental concepts, and
theories and solve quantitative problems that can be

applicable to a wide spectrum of engineering disciplines.



Course Credit: 3

Course Code: PHY 0533-1101

lass: 17 Weeks (2 Lecture per week, Total = 34)
IE Marks: 90

Total: 26 weeks per semester
Exam/ Result: 06 weeks

Holiday/ Leave: 3 weeks
E Marks: 60




Assessment Pattern

Continuous Internal
Evaluation (CIE 90
marks)

Blooms Test | Assignment | Quiz | Co-curricular

Category | (Out S (15) | Activities (15)
of 45) (15)

Remember | 05 5

Understand | 05

Apply 10 Attendance

Analysis 8 7 10 15

Evaluate 7 8

Create 10




Assessment Pattern
Semester End Examination (SEE 60)

/

BLOOM’S TAXONOMY utare

10

10

10
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Numerical Grade Letter Grade Grade Point
80% and above A+ 4.00
75% to less than 80% | A 3.75
70% to less than 75% | A- 3.50
65% to less than 70% | B+ 3.25
60% to less than 65% | B 3.00
55% to less than 60% | B- 2.75
50% to less than 55% | C+ 2.50
45% to less than 50% | C 2.25
40% to less than 45% | D 2.00
Less than 40% F 0.00

F* Failure

|** Incomplete

W*** Withdrawal
R**** Repeat
y*xFEE Audit
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be able to

Knowing about

different basic

parameters in the field
lectricity,

agnetism &

CLO2:

Explaining and

analyzing different
theories and formulas
for Vector, Wave,
Simple harmonic
oscillator, Elasticity

Gravity, Fluid

Mechanics, Electricity

and Magnetism, etc.

CLO3:

Solving
quantitative
problems in the
fields of Vector,
Wave, Simple
harmonic oscillator,
Elasticity, Gravity,
Fluid Mechanics,
Electricity and

Magnetism, etc.

on the

Course learning outcomes (CLO): After successful completion of all the courses students will

CLO4:

Discover
different types of
devices and

analyze different

material
properties based
theories

of physics.




Content of Courses

Vector addition, Vector subtraction, Unit vector, Applications of Vector, wave, 8 CLOL, CLOS
Types of Wave, Doppler Effect, Simple harmonic Oscillator Energy of the

oscillator, Topic Related Problems.

Elasticity, Stress, Strain, Hook's Law, Elastic Modulus, 10 CLOZ2, CLO3
Pascal's law, Buoyant force, Archimedes Principle, Continuity Equation,

Bernoulli's Equation, Topic Related Problems.

Conductor, Insulator, Semiconductor, Coulomb’s Law, Electric Field, Electric 8 CLO3, CLOA
Field lines, Electric Flux, Electric Potential Energy, Capacitor and Capacitance,

Dielectrics, Gauss's Law, Topic Related Problems

Magnetism, Magnetic force on a conductor, the Hall effect, 8 CLO3, CLO4
The Biot-Savart Law, Ampere's Law, Topic Related Problems, review and

Discussion



Course Qutcome

CLO1 Knowing about different basic parameters in the field of Electricity, Magnetism & Properties of Matter.

CLO2 Explaining and analyzing different theories and formulas for Vector, Wave, Simple harmonic oscillator,

Elasticity, Gravity, Fluid Mechanics, Electricity, and Magnetism etc.

CLO3 | Apply problem-solving techniques to quantitative problems in the areas of electricity, magnetism, and

the mechanical behavior of materials.

CLO4 Explore and evaluate electrical circuits, magnetic systems, and material properties using theoretical

concepts and experimental methods.



\Vector addition, \ector subtraction,

Unit vector and Lecture, Oral Quiz, Assignment, and

Applications of Vector Presentation, Video, = Written Exam, Presentation CLO1, CLO3

Vectors Problems. presentation

Simple harmonic Oscillator CLO1, CLO3
The energy of the oscillator, , Lecture, Oral Quiz, Assignment, and
Doppler effect, Presentation, Written Exam

SHO-related Topic Related Problems.

Elasticity, Stress, Strain Lecture, Oral Quiz, Assignment, Written CLO1, CLO2
Hooke's Law, Elastic Modulus, Presentation Exam, and Discussion

Poisson’s ratio.




Teaching and Learning Correspondin

Assignment Strategy

Strategy g CLOs
4 Newton's Law of Universal Gravitation, Lecture, Oral Quiz, Assignment, and CLO1,
Kepler’s Law, and the motion of Presentation, Video Written Exam, CLO3
Planets, Topic Related Problems. presentation.
5

Energy consideration of the Planetary
and satellite motion,

Topic Related Problems

Pascal's Law, Archimedes Principle,
Torricelli experiment, Fluid Dynamics,
Topic Related Problems,

CLO2,
Lecture, Oral Quiz, Assignment, and CLO3
Presentation, Written Exam
Lecture, Oral Quiz, Assignment, CLO3,
Presentation Written Exam, and CLO4

Discussion




Topics

Ideal fluid and Bernoulli’s Principle
Continuity Equation, Topic Related

problems,

Teaching and Learning
Strategy

Lecture, Oral

Presentation,

Assignment Strategy

Quiz, and Written

Exam,

Corresponding
CLOs

CLO1, CLO3

Band Theory, Conductor, Insulator,
Semiconductor, Coulomb’s Law,

Electric Field, Electric Field lines,

Lecture, Oral

Presentation,

Quiz, Assignment,

and Written Exam

CLO2, CLO3

Electric Flux, Electric Potential Energy,

Capacitor and Capacitance, Topic

Related problems

Lecture, Oral

Presentation

Quiz, and Written

Exam

CLO1, CLO2

Dielectrics and piezoelectricity,
Kirchhoff's Current Law (KCL),
Kirchhoff's Voltage Law (KVL), Topic

Related problems

Lecture, Oral
Presentation and Video

presentation

Quiz, and Written

Exam

CLO1, CLO2




Teaching and Learning

Topics Strategy

Gauss's Law, Magnetism,
Magnetic force on a conductor, _ _
Magnetism related problems Video presentation.

Lecture, Oral Presentation,

Magnetic Domains and
Hysteresis:
Origin of magnetism,

Lecture, Oral Presentation,

Different types of magnetism
Hall effect,
Topic Related Problems

Lecture, Oral Presentation

The Biot-Savart Law, Ampere's
Law : _
Topic Related Problems. and video presentation

Lecture, Oral Presentation

Assignment Strategy

Quiz, Assignment, and

Written Exam,

Quiz, and Written Exam

Quiz, and Written Exam

Quiz, and Written Exam

Corresponding
CLOs

CLO3, CLO4

CLO2, CLO3

CLO1, CLO2




Week Topics Teaching and Learning Assignment Strategy Correspondin

Strategy g CLOs
15  Maxwell's fundamental laws, Lecture, Oral Quiz, Assignment, and CLO1, CLO3

Topic Related Problems. Presentation, Video Written Exam,

presentation.
16  Review and discussion class Lecture, Oral Quiz

Presentation,

17 Review and discussion class Lecture, Oral

Presentation,
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15T WEEK TOPIC: PROPERTIES PHYSICAL VECTOR
OF MATTER: QUANTITY, ANALYSIS,

TOPIC PAGE: 16- 37
RELATED
MATH
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< What is Matter

Matter is defined as anything that has mass and occupies space. It is composed of particles, primarily

atoms and molecules, which have mass and volume.
s What is Physical Quantity?
The physical quantities in physics are what we can measure or sense in an object or a phenomenon.

Physical quantities can be categorized into two main types: scalar and vector quantities. Additionally,

here are derived quantities and fundamental quantities.

1. Scalar Quantities:

Scalar quantities are described by their magnitude only, without any associated direction. They are

fully characterized by a numerical value and a unit. Examples of scalar quantities

Mass (e.g., 5 kg), Temperature (e.g., 30°C), Time (e.g., 10 seconds), Energy (e.g., 200 joules)



Real World Applications of Vector Calculations 13

Motion Planning in Aerospace Engineering

Robotics

Navigation Structural Analysis
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2. Vector Quantities:

ector quantities have both magnitude and direction, and they follow the rules of vector algebra. Vector quantities
re represented by arrows, where the length of the arrow represents the magnitude, and the direction of the arrow
epresents the direction of the vector. Examples of vector quantities include:

LDispIacement (e.g., 10 meters east)

*\elocity (e.g., 20 m/s north)

Force (e.g.,/50 Newtons upward)

Displacement
' N
Suppose Sam starts from his front door, walks i P A
Sam’s > Sam’s
across the street, and ends up 200 ft to the house displacement
\ \
northeast of where he started. Sam’s D i eSS
<= 3
displacement is a vector quantity. But, Sam’s e e O
- . from the imitaal to
actual path is a Scalar quantity. the final position




Some Properties of Vectors

* Equality of Two Vectors

These four vectors are equal because they have equal //7

lengths and point in the same direction.

* Adding Vectors

e Subtracting Vectors

=l

gl

We would draw "
B here if we were ’
adding it 1o A. ‘B

Adding -Bo A
is equivalent to
subtracting B
from A.

20



Unit Vectors

A unit vector is a dimensionless vector
having a magnitude of exactly 1. Unit
vectors are used to specify a given
direction and have no other physical
significance.

We shall use the symbols i&, j& and k to
represent unit vectors pointing in the

respectively.
A= Ll - 1J : 3 ~\l\ The sum of A and B is

B=3Bi+B)+Bk R =(A,+B)i+ (A +B)j+ (A + Bk
X ¥ z

21
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Find the sum of two displacement vectors Aand B lying in the xy plane and given by

A =(20i+20))m and B = (2.0i- 4.0j)m

R=4%+B =(20+20)im+ (20 - 40)jm R.=40m R,= —2.0m
R=VRI+R*=V(40m)®+ (-20m)?=V20m = 45m
R —20m . 5
tan g = o= — 70— = ~050 8= 333

A particle undergoes three consecutive displacements: AT, = (151 + 30j + 12k) cm, AT, = (231 — 14j — 5.0k) cm,
and Ay = (-13i + 15j) cm. Find unit-vector notation for the resultant displacement and its magnitude.

AY = A7, + AT, + A¥3=(15+ 23— 13)icm + (30 — 14 + 15)jcm + (12 — 5.0 + 0)kcm
= (251 + 31 + 7.0k) cm

R= "'V/Rf + Rf + R;“’ =V(25ecm)? + (31 cm)? + (7.0cm)? = 40 cm



**Real-Life  Applications of

Vector-Related Phenomena**
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* What is the Parallelogram Law of VVector Addition?

he parallelogram law of vector addition is the process of adding vectors geometrically. This law says, "Two
vectors can be arranged as adjacent sides of a parallelogram such that their tails attach with each other and the
sum of the two vectors is equal to the diagonal of the parallelogram whose tail is the same as the two vectors.
Consider the vectors P and Q in the figure below. To find their sum:

Step 1: Draw the vectors P and Q such that their tails touch each other.

lete the parallelogram by drawing the other two sides.

Step 3: The diagonal of the parallelogram that has the same tail as the vectors P and Q represents the sum of the

two vectors. i.e., P+ Q = R. Here, the vector R is called the resultant vector (of P and Q).

(a) (b)
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O Parallelogram Law of Vector Addition Proof:

Now, to prove the formula of the parallelogram law, we consider two vectors P and Q represented by the
two adjacent sides OB and OA of the parallelogram OBCA, respectively. The angle between the two
vectors is 0. The sum of these two vectors is represented by the diagonal drawn from the same vertex O of
the parallelogram, the resultant sum vector R which makes an angle 3 with the vector P.

Extend thevector P till D such that CD is perpendicular to OD. Since OB is parallel to AC, therefore the
angle XOB is equal to the angle CAD as they are corresponding angles, 1.e., angle CAD = 0. Now, first,




In right-angled triangle OCD,

by Pythagoras’ theorem, we have
OC? = 0OD? + DC?

= OC2 = (OA + AD)? + DC? --- c()1)

In the right triangle CAD, we have

cos 6 = AD/AC and sin 6 = DC/AC

= AD'=AC cos 6 and DC =AC sin 0

=AD =Qcos0and DC=Qsin 0 --- (2)
ubstituting values from (2) in (1), we have

R? = (P + Q cos 0)? + (Q sin 0)?

= R? = P2 + Q2%c0s20 + 2PQ cos 0 + Q2sin%0

= R? = P2 + 2PQ cos 0 + Q?(cos?0 + sin?0)

20

= R2=P2 + 2PQ cos 0 + Q? [c0os20 + sin%0 = 1]
= R = (P2 + 2PQ cos 0 + Q?)

The magnitude of the resultant vector R.

Next, we will determine the direction of the
resultant vector. We have in the right triangle
ODC,

tan § = DC/OD

= tan = Q sin 6/(0OA + AD) [From (2)]

= tan p = Q sin 6/(P + Q cos 0) [From (2)]

A4 (Q sin 0)
= p=tan l[(P+QcosG)]

— Direction of the resultant vector R
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s Special Cases of Parallelogram Law of Vector Addition

Now, we know the formula to determine the magnitude and direction of the sum of the two vectors. Let
us consider a few special cases and substitute the values in the formula:

» When the Two Vectors are Parallel (Same Direction)

If vectors P and Q are parallel, then we have 6 = 0°. Substituting this in the formula of the

parallelogram law of vectors, we have

= (P + Q)

=P+ Q

B =tan'[(Q sin 0)/(P + Q cos 0)]

= tan-1[(0)/(P + Q cos 0)] [Because sin 0 = 0]
=(Q°



» When the Two Vectors are Acting in Opposite
Direction

If vectors P and Q are acting in opposite directions,

then we have 6 = 180°. Substituting this in the formu

of paralleflogram law of vector addition, we have

IR| = X(P? + 2PQ cos 180° + Q?)

(P2 - 2PQ + Q?) [Because cos 180°= -1]

V(P - Q)2

=P-Q

B = tan-1[(Q sin 180°)/(P + Q cos 180°)]

= tan-1[(0)/(P + Q cos 0)] [Because sin 180° = 0]

0° or 180°

la

28

» When the Two  Vectors are
Perpendicular

If vectors P and Q are perpendicular to each

other, then we have 6 = 90°. By the

parallelogram law of vector addition, we have

IR| = V(P2 + 2PQ cos 90° + Q?)

= (P2 + 0 + Q2) [Because cos 90° = 0]

=\(P? + Q?)

B = tan"1[(Q sin 90°)/(P + Q cos 90°)]

= tan-[Q/(P + 0)] [Because cos 90° = 0]

= tan"}(Q/P)



»A car goes 5 km east 3 km
south, 2 km west and 1 km north.

Find the resultant displacement.

29




Example 1:
A car goes 5 km east 3 km south, 2 km west and 1
km north. Find the resultant displacement.

Solutigp: ||

)|

|
A

First we will make the vector diagram
O to’ A5 km east

Ao B 3 km south

to C 2 km west

0 D 1 km north

displacement is OD

30

Along the horizontal direction: 5 km east - 2 km
west = 3 km east

Along the vertical direction: 3 km south - 1 km north
= 2 km south

OD =(32+ 22 + 2 x 2 x 3 x Cos 90 deg)
=\(32+2

= 3.6 km

tan p = 2/3

or p = tan'2/3 = 34 deg

Thus resultant displacement is 3.6 km, 34 deg south

of east.



Example 2:

Two vectors P = (1, 2) and Q = (2, 4) have an angle of 0° between them. Find direction of

the resultant vector and the magnitude of their sum vector.
Solution:
Using the parallelogram rule of vector addition formulas, we have
IR| = V(P2 + Q2 + 2PQ cos 0),
B =tan-1[(Q sin 6)/(P + Q cos 0)]
or this, first, we need the magnitudes of vectors P and Q.
IP| = V(12 + 22) = 5, |Q| = V(22 + 42) = 275
IR| = V(52 + (2V/5)2 + 2PQ cos 0)
= V(5 + 20 + 2x5x2/5 cos 0°)
= (25 + 20)
= \/(45)
=345

Answer: The magnitude of the sum vector is 3V5 units.

31
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Two forces of magnitudes 4N and 7N act on a body and the angle between
them iIs 45°. Determine the magnitude and direction of the resultant vector

with the 4N force.
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Example 3:

Two forces of magnitudes 4N and 7N act on a body and the angle between them is 45°. Determine the
magnitude and direction of the resultant vector with the 4N force.

Solution:

Suppose vector P has magnitude 4N, vector Q has magnitude 7N, and 6 = 45°, then by the parallelogram
law of vector addition:

IR|Z V(P2 + Q2 + 2PQ cos 0)

£ (42 + 72 + 2x4x7 cos 45°)

=(16 + 49 + 56/\2)

= (65 + 56/\2)

~12.008 N

B = tan-2[(7 sin 45°)/(4 + 7 cos 45°)]

= tan'L[(7\2)/(4 + 7\2)]

~28.95° Answer: The magnitude is approximately 12 N and the direction is 28.95°.




Assignment -01

1. Two forces of 3 N and 4 N are acting at a point such that the angle between them is
60 degrees. Find the resultant force

2. Find the resultant of the following two displacements: 2 m at 30 deg and 4 m at 120
deg. The angles are taken relative to the x-axis.

3. Two forces of 100N and 150N are acting simultaneously at a point. Find the

resultant if the angle between them is 45°

34
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The Scalar Product of Two Vectors

The scalar product of any two vectors 4 and B is defined as a scalar quantity equal
to the product of the magnitudes of the two vectors and the cosine of the angle u

K . ﬁ = ABcosf
r= FArcosf = T A7

1ri=jj=kk=1 \\ -
Bcos 8
ifj:;fﬁ fE:D
g ¢ ¢ » — — K
A=A + 4 + Ak A-B =A,B,+ AB + AB
_ nt 2 » - —
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— —> lh -~ -~ — -~ ~
The vectors A and B are givenby A = 2i + 3jand B = —i + 2j.
(A) Determine the scalar product A-B.

—  —»

A-B =(21+3j)-(-i+2))
= —2i-1+2i-2j — 3j-i+ 3j-2j
= —9(1) + 4(0) — 3(0) + 6(1) = -2+ 6 = 4
(B) Find the angle @ between X and B. 4 =VA2 + A2 = V(2)F + (3) = V13

A-B 4 4 e
o AB  v13V5 Vb B (=17 + @)
4
— =1 — o
f# = cos S 60.3

\ particle moving in the xy plane undergoes a displacement given by AY = (201 + 3.0j) m as a constant force
= (5.0i + 2.0j) N acts on the particle. Calculate the work done by F on the particle.

=l -



The Vector Product and Torque

b

|
|
)

-y
|l
[S——

“m N:b -
'iP f:b ?T'?

.4_95 ._?" o
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The direction of C is perpendicular

to the plane formed by A and B,
and its direction is determined by
the right-hand rule.

b

10
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*Wave:
A wave is a disturbance in a medium that carries energy without a net movement of particles. It may take the form
of elastic deformation, a variation of pressure, electric or magnetic intensity, electric potential, or temperature.
O What are the types of waves?
The following are the types of waves:

1. Mechanical waves
2.Eleetromagnetic waves
3./Matter waves

.Mechanical Wave
A mechanical wave is a wave that is an oscillation of matter and is responsible for  the transfer of energy through

b Crest Amplitude

a medium.

/

% There are two types of mechanical waves:

Rest
Position

\_ 7

1. Transverse waves : Troush - Wavelength
When the movement of the particles is at right angles or perpendicular to the motion of the energy, then this
type of wave is known as a transverse wave. Light is an example of a transverse wave.

Displacement (m)




2. Longitudinal waves :

In this type of wave, the movement of the particles is parallel to the motion of the energy, i.e. the
displacement of the medium is in the same direction in which the wave is moving. Example — Sound

Waves, Pressure \WWaves

¢ Electromagnetic Waves:

I

N

Transverse Wave

_

(i

el oot 0ot

Longitudinal Wave

These waves are disturbance that does not need any object medium for propagation and can easily
travel through the vacuum. They are produced due to various magnetic and electric fields. The
periodic changes that take place in magnetic and electric fields and therefore known as

electromagnetic waves.

Following are the different types of electromagnetic waves:

1. Microwaves
2. X-ray
3. Radio waves

4. Ultraviolet waves

41



¢ Difference Between Transverse Wave & longitudinal Wave

Transverse

Longitudinal

Oscillations perpendicular to direction of travel

Oscillations parallel to the direction of travel

Can travel through a vacuum — doesn’t need
particles to transfer energy

Can’t travel through a vacuum — needs
particles to transfer energy

Transports energy without transporting matter

Transports energy without transporting matter

e.g. Sound waves

e.g. Electrpéagnetic waves
7

A transverse wave

Direction of wave trawel . Crest

/TN
N/ e
\ |

One wavelength(3)

Trough

U U

Compression
Rarefacn
Carection of travel -—p

Wawvelength, &

Mowvernent f‘aﬂ' maolecules

42
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s Matter Waves:

passed.

+» Difference Between Mechanical Wave and Non-Mechanical Waves

Mechanical Waves vs Electromagnetic Waves

Mechanical Wave

Electromagnetic Wave

Mechanical waves are waves that need a medium
r propagation.

Non-mechanical waves are waves that do not need
any medium for propagation.

Sound waves, water waves and seismic waves are
some examples of mechanical waves.

The electromagnetic wave is the only non-
mechanical wave.

Mechanical waves cannot travel through vacuum

Non-mechanical waves can travel through vacuum

43

Any moving object can be described as a wave When a stone is dropped into a pond, the water is disturbed
from its equilibrium positions as the wave passes; it returns to its equilibrium position after the wave has
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 Doppler Effect

The Doppler effect is the apparent change in the frequency of sound, light, or other waves due to the relative
motion between the source of the sound and the observer.

We can deduce the apparent frequency in the Doppler effect using the following equation:

f’z observed frequency
f = actual frequency

V = velocity of sound waves
V,= velocity of observer
V_= velocity of the source




**Real-Life Applications of the Doppler Effect**

IHE DOPRLER EFEECT

45
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(a) Source Moving Towards the Observer at Rest
In this case, the observer’s velocity is zero, so V, is equal to zero. Substituting this into the Doppler effect

equation above, we get the equation of the Doppler effect when a source is moving towards an observer at rest as:

f’z observed frequency
£ = actual frequency

V = velocity of sound waves
V_ = velocity of the source

f’: observed frequency

f f = actual frequency
V = velocity of sound waves
V_= velocity of the source

y Vv
(V-(-V))



(c) Observer Moving Towards a Stationary Source

In this case, v, will equal to zero, hence we get the following equation

f’= observed frequency
f = actual frequency

V = velocity of sound waves
V= velocity of observer

d) Observer Moving Away from a Stationary Source

Since the observer is moving away, the velocity of the observer becomes negative. So, instead of adding
V,, We now subtract, since V, is negative.

f’z observed frequency

f = actual frequency

V = velocity of sound waves

V,= velocity of observer

47
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Doppler Effect Solved Problems

1. Two trains A and B are moving toward each other at a speed of 432 km/h. If the frequency of the whistle
emitted by A is 800 Hz, then what is the apparent frequency of the whistle heard by the passenger sitting in

train B. (The velocity of sound in air is 360 m/s).

2. A bike rider approaching a vertical wall observes that the frequency of his bike horn changes from 440 Hz to

480 Hz when it gets reflected from the wall. Find the speed of the bike if the speed of sound is 330 m/s.
s= The speed of the bike is 14.3 m/s



Waves and Oscillations

Periodic Motion

A motion that repeats itself repeatedly after a regular interval
of time is known as periodic motion. This path may be

circular, or elliptical. Linear or more complex.

Oscillatory Motion

A particle having periodic motion remains half of its time
period in one direction and the rest of time period remains in
another direction along the same line, then its motion is called

oscillatory motion

Earth) ) Sun

point of suspension

length

¥ amt®
LT UL L

egquilibrium
position



Oscillations and Vibrations:

If you pull a swing or pendulum to the side and release it, it oscillates (Latin
for "swing") back and forth. If you hang a weight on a spring, pull it down
and release it, then the system will vibrate (Latin for "shake™) up and down.

Oscillations and vibrations are two words for one concept, i.e. repetitive

time between repetitions is constant, the oscillation is called a

harmghic motion and the time between repetitions is called the period. The

nuynber of repetitions per second is called the frequency and is the inverse of
e period.

The period, T, is normally measured in seconds, and the frequency, v, in
Hertz. When the oscillations (or vibrations) affect the material around them a

wave Is formed which transports energy away.

50
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Maximum displacement of the system from the equilibrium position is the amplitude of the vibration.

= \When the motion is maintained by the restoring forces only, the vibration is described as free vibration.

= \When a periodic force is applied to the system, the motion is described as forced vibration.
=  When the frictional dissipation of energy is neglected, the motion is said to be undamped.

= Actually, all vibrations are damped to some degree.

Damped vibration: When a vibrating body vibrates
i= air or any other resisting mediurn, the amplitude of vibration

coes not remain constant but decreases gradusally and ultimately
the body comes %0 rest .Such vibrations are known as dammped

vikbrations.

,

x(1)

e o | T |
1“ ~~~~~~~~~~~ t./\ . - -
________________________ .
N\ AN 1\ .
\/ \/J

x(1)/x(0)
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Free Oscillation and Damped Oscillation

If an oscillation occurs flawlessly without any resistive force acting on it is called free oscillation.

Any oscillation occurring in an air medium, experiences frictional force and consequent energy

dissipation occurs.

e amplitude of oscillation decays continuously with time and finally diminishes. Such oscillation is called

damped oscillation.

The dissipated energy appears as heat either within the oscillating system itself or in the

surrounding medium.
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Characteristics of Damped Oscillation

« Frictional force acting on a body opposite to the direction of its motion is called damping force.
« Damping force reduces the velocity and the kinetic energy of the moving body.

« Damping or dissipative forces generally arises due to the viscosity or friction in the medium and are non-
conservative in nature.

hen velocities of body are not high, damping force is found to be proportional to velocity (v) of the
particle

The frequency of damped oscillator is always less than that of it’s natural or undamped frequency.

Amplitude of oscillation does not remain constant, rather it decays with time



Free Oscillation and Damped Oscillation

Undamped

| Damped Oscillations
A

E |
x

1T 2T 3T 4T 5T 6T 7T
Time (s)
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U,,U,,u.l,,;

Damped oscillation

Free and damped oscillations
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Time-30 Marks-15
1. Explain the Doppler effect.

What is the apparent frequency of the whistle heard by the passenger sitting in train B when

two trains A and B are moving toward each other at a speed of 432 km/h? If the frequency of

the'whistle emitted by A is 800 Hz, then (The velocity of sound in air is 360 m/s).

2. Determine the energy of the simple harmonic oscillator
A 600 g block connected to a spring for which a force constant is 10 N/m is free to oscillate.

Determine the period of its motion
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Differential Equation of a Damped Oscillator

If damping is taken into consideration for an oscillator, then oscillator
experiences

(i) Restoring Force : F,.=—ky; k=force constant
(i) Damping Force : F d=—bi—i’; b=damping constant
Where, y is the displacement of oscillating system and v is the velocity of
this displacement.
We, therefore, can write the equation of the damped harmonic oscillator
as, F=F,+ F,

d*y

From Newton'’s 2" [aw of motion, F= m—=

Combination of Hook’s law and Newton’s 2" law of motion:

d’y dy
ma=ky-bo

dy Kk b ay
:_ —_— —

dt? t m‘y m dt 0

d*y
dt?

= +2p%+m2y=0 (4.1)

2p =£ = damping co-efficient of the medium.

p has the dimension of frequency referred to as
damping frequency.

Solution:

To solve equation (4.1) let us take the trial solution,
y = Ae™? (4.2)

Substituting this solution in equation (4.1) we get,
m'ZAe™t+2pm'Ae™ +w2Ae™t =0

=>m'%y+ Zpm'y+ wly=0

=m'+ Zpm'+ w?=0; [Quadratic equation]

Solving this equation for m' we get,

mr=_ 2pt./ 4p2_4m2 _ p i pz — mz

2
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Then, the general solution of equation (4.1) is,

y = e=pt 4P 4 g~ (=] (43

Case. I (Overdamped motion)

If p?>w? the indices of “e” are real and we get,

y = e Pt[Ae%t + Be %] (4.4)
Where, o =4/p? — w?

Now, let us replace 4 and Bby two other constants Cand ¢

) C c _
such that we can write, Azz e and B=E e 8
_C 8, C -6 _C(,8 -8 c
+B=- = == ==
Here, A+B Se +29 z(e +e ) 22605‘h5

~A+ B = Ccoshd

Using the new constants in equation (4.4),

R C _§5
y=e pt[Eeﬁecr_t +e 8 at]

=£E—pt[e(at+6) + e—(txt+6)]
2

=§e‘pt X 2 cosh(at + §)
=Ce™ Plcosh(at + &)

So, y=Ce Plcosh [(Jpz — w? t) + 5] (4.5)

Negative power of “e”indicates exponential decrease of y that means
the particle does not oscillate. Equation (4.5) represents a continuous
return of y from its maximum value to zero at t=co without oscillation.
This type of motion is called the overdamped or dead beat or aperiodic

motion.

y A
1- Overdamping
o 2- Critical damping Example:
E 3- Underdamping pie.
o Dead beat galvanometer,
.E: pendulum oscillating in a

viscous fluid, etc.

(=]
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Then, the general solution of equation (4.1) is,

y = el 4elFT) | (TN 43

Case. Il (Underdamped motion)
If p?<w? the indices of “e” are imaginary and we get,
Where, =4/ (w? — p?)
y = e~ Pt[Aei®t + Be~18t]

=e~ P[AcosOt + iAsin@t + BcosOt — iBsinft]

=e~ PY[(A + B)cosOt + i(A — B)sin@t] (4.5)
Let, (A+B)=acosy and i(A-B)=asiny
a = +Jacos?y + a?sin?y = /(A + B)? + i2(A — B)?
=VAZ + 2AB + B? — A2 + 2AB — B? = +2VAB

_asiny _i(A-B)
tany= acosy ~ (A+B)

Using the new constants in equation (4.5),

y = e~ P'[acosy cosOt + asiny sinbt]

y=ae” P[cosBtcosy + sinBtsiny]

=ae” Pt cos(@t—y)

y=ae‘ptcos[,f‘(m2 —pz)t—y] (4.6)

In this case y alternates in sign and we have periodic
motion but the amplitude continuously diminishes due to
the factor e~ Pt. This situation is called underdamping

with the amplitude @e~ P* and the frequency,/ (w? — p2).

y A
1- Overdamping
L 2- Critical damping
o .
= 3- Underdamping
a
=
<

o
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Then, the general solution of equation (4.1) is,
y = et ae(VP7=0)e | po-(Ve7-ei)] (4.3)

Case. III (Critical damping motion)
If P=w? (p?> — w?) =0;So, p> =wip=w
From equation (4.3) we can write,
y = e~ “[Ae + Be?]
=e~ “t[A + B]

It implies that the oscillation is decaying without any damping factor.
It is not possible. So, the solution breaks down. Now, we have to
consider that p? is not quite equal to w? but very close to each other.

Thus /p? — w? = h = 0 (close to zero but not zero).

From equation (Using the new constants in equation (4.3),

hZt?  Rh3t?
.|._
2! 3!

y = e Pt[Ae"t + Be "] = e~ P! [A(1+ht+ +---)+

B(1—ht +25 204 )] = e PHAQ + ho)] + B(L — ho)]
y=e P[(A+ B) + (A — B)ht] (4.7)

Let, A+B=A"and (A-B)h=B'

y=e  PL[A" +B'l| (4.8)

At amplitude, y=y,__. =a (att=0)

max
Applying these two conditions in equation (4.8),
a=e(A'+B'x0)=> A'=a

% = —pe PY(A'"+ B't) + e P'B’

So, from equation (4.8)
y= e Pa + pat]

y= ae P[1 + pt] (4.9)

This solution represents a continuous return of y from its
amplitude to zero. Although it looks like overdamped
motion it is a boundary between underdamped and
overdamped motion. Under this condition oscillatory
motion changes over to dead beat motion and vice versa.

Hence, this is called critical damping motion.




>
I

Amplitude g
&
= s
D
)
\

-a+

Angular frequency of a damped oscillator, ®' =4/ w? — p?

b2
4m?2

b

k
!m_ —
m m

) k
Since, w? = —and 2p=
Mechanical energy of a free oscillator, Ezékaz =constant

b
Mechanical energy of a damped oscillator, Ezikaz e‘z”ﬂ’f:%kaz e m'; [reduces with exponentially with time]
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Damped vibration

- During the motion of a body executing damped simple
harmonic vibration, the followmg two froces will be
@multaneously actmg on the body |

- (a) the restoring force actmg on the body which is
proportlonal to the dlsplacement and dlrected opposate to the
dxsplacement That is, 'F —ay '

(b) the dampmg force proportlonal to the veloc1ty and

dlrected opp051te to the veloelty Let this force be bg%




Damped vibration

Therefore the dlfferentlal equatlon of motlon shall be as

.fC’“OWS mdgzt% ba{ y ‘
i m%*bg%+ay 0
il (312":1 e d y--=;;0l
or., %Zi%”*%\f+uy o \ A

Where A Ll and W= _-_%1_. i
. amy

| Equatlon (2 1) may be used in: orde1 to deduce the way in
Wthh 'y varies’ with t and thus predict the. nature of the
_;motlon iise., whether the motlon 1s ‘oscillatory or dead beat



Damped vibration

G (i)If A =0i.e., if there is no frictional force either mteral
or extemal then equatlon (1) reduces to

2
E&”W %

gy

or dt2 ”’y

‘ . e acceleratlon oc dlsplacement and opposed to 1t
the equatlon represents an undamped slmple harmomc
v1brauon of penod T given by

’f‘ _ 271 _ o2n
and the frequency 1s glven by n -? :}:- a\%

The period T and the frequency n in the above equatlon'
are known as natural perlod and natural frequency of—l
‘vibration of the body. b Ry A “



Damped vibration

b

by m and putting— = 2k and -;‘; = wy® We geb
d d |
2y +2k y+wo y=0 3)
Lot a solution of differential equation be
y=Ae®t
ay Ggy

B Y. | oce” and

g S d g . --Aatge“ (3)




Damped vibration

Substituting these values in 3 we have
Aolent -2k Ane®?t 4 cg2de®t =0

O@-i-ZIGa +wg ==£)

wem —2RL V 4B —dwd
2
e ""k L" 4[ kgmw@

e .

Hence a gonernlk aolution of the differential equation|@lli 18
=l VB0 A P=aght

where A; and 4, are arbitrary constants whose values are deter-

mined from boundary conditions.
The above equation can be put in the form

-kt [Ale '\/kz——-wo t"l_A e""\/ k’—-woz t] (4)

The nature of motion represeNted by equation (4) depends
upon the relative values of k and w,c Now, three different cages

arise.




W Damped vibration

2(.z’) Heavy damping. When k>w,. In this case k®
== a—;n——z» _-—% =—a positive quantity. Hence W kP2 is .re_ai.
Substltutm v kz——wo- =4 in equatior (2.3) we have
y=e"kt [A,; ePt{ Ay e ]
Let A——A1+Ag and B= A]_——Az then

Al‘_‘ A;B and Ag— A;B
A+B A B

e“pt

—kt pi ~—pt pt —pt

i € ig-e e —e -
== £

[ A 5 e J

[ A cosh pt +B sinh pt ]

The displacement consmts of two terms both dymg off expo-

‘nentially to zero.
The volues of A and B depend upon the mltml condition. If

y =0 at t=0. Then

A=0and y=2DBe psinh pt
; conif Bl
L =Be ! sinh v (P—wyg) ¢

——-kt



Damped vibration

(13) Critical damping when k=w,. In this case

2
2 3
™ 4m: m

and the quadratic equation in « has two equal roots
The displacement y is given by

y=(A1+ 4s)e*

This is the limiting case of the behaviour shown in (1). We
shall see in the next case when k<w,or k2—w,? is & negative
quantity that the particle undergoes an oscillatory damped simple
harmonic motion. Therefore, for k=uw, the motion is neither over-
damped nor qscillatory and is said to be critically damped. The
property of critical damping is made use of in measuring instru-
ments like hallistic galvanometers, |




Damped vibration

(114) Light damping when k<w, In this case k*—w®

3 8 | . o 9 . -
= 4:7;2 - —a negative quantity. Hence A kB —wy? is an tmaginary
quantity.

Lot vV k2 —wpt=iw’  or o'=vV wl—k
. y=e-l‘t[AleiN't+A2 e"‘iw't]
P A= 20 gip and 4y =22 ois
ut 1= R e? an 2 =5 e
where 4, and ¢ are also constants the value of ‘'which depends upon
the state of motion at #=0 _, |
pi(wt+9) __ p-i(w/t+$) T
| 2
=Age*t sin ('t ) | N0)
This is the equation of a damped simple harmontc motion with
amplitude A,e™* which goes on decreasing with time and angular.

y=lé—kt Ag

froquency w'= v we?—k?.



A simple pendulum is constructed by attaching a mass to a thin rod

or a light string. We will also assume that the amplitude of the

oscillations is small.

The pendulum is best described using polar coordinates.

The origin is at the pivot point. The coordinates are (r, ¢). The r-

coordinate points from the origin along the rod. The ¢- coordinate is
erpendicular to the rod and is positive in the counterclockwise

direction.

Apply Newton’s 2" Law to the pendulum

> F, =-mgsin ¢ = ma,

3 E.=T=mgcos ¢

/1




oscillations is then:
>F, =—-mgsing=m a,
=—mg Sing =M«
= -gSing =«
a=-g¢

= a:—(%)s

ca=-w?s jw* =%

=~ Q

This equation represents the SHM

Therefore, The time period T = % =2

If we assume that ¢ <<1 rad, then sin ¢ = ¢ and cos ¢ =1, the angular frequency of

(2
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Integrating the acceleration gives speed as a function of displacement from
the origin. Note the switching of the variable from time t to velocity v in

the top line.

A graph of velocity versus
displacement Is given below.

he speed goes to zero at the
extreme displacements, and
to maximum at the origin.

Vv

k\/%.A

e
.,

A

-A

3~

dv dv dx dv
a_ — " — "

St dx dtax

dv k
ada= —'V =—-|—|-
dx m %
v -dv = - E - X - dx
m

ij-dv= —(g] -ﬁx-dx

Putting v=0 when x=A and v=v when x=x

¥ A

L
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Integrating further gives the displacement as a function of time. Note that the variables

are separated to give only displacement on the LHS and only time on the RHS.

-
o J

=)

now at ¢ = 0 the displacement is x, so
X t
f dx =J'\/E-dt
w (a7 -x?) JoVm
(AT k
sin’'| = =, —-(dt
(AJ . m J;
sint| X| - sint| Xe| = £-t
A A m
[1Jk'f+a] , where sina = X0
m A
. X . [ |k )
ile. —=sin|,—t+a
A m

-}

3>

=)

3>

Q‘

o

3|
—_—
| X
e

[




The result is:

X=A -sin(mt +o:)

where w = \/E _ 2" is the angular frequency
m T
and sina = %, gives the initial position

You always have the sine of an angle.

Herg’the angles, a and ¢ are not real angles in space.

sina = — and

: . X
SIiNlwt + a) = siNg = —
( ) ? =

a and ¢ are called phase angles, because they relate particular

displacements to the maximum displacement. w7 has to have a unit of

ngle, and so @ must be in radian per second, rad.s1.




Projection of Circular Motion

Angular displacement 6 = wt;

_0_2n
w=—=—
t T

Therefore, The time period T = A B

(Jatt=0

Screen

where K Is the spring constant
and m is the mass , Where T Is
the time period of the SHM ,w

Copyright © 2007 Pearson Prentice Hall, Inc.

IS the angular velocity



Further investigation of the mathematical description of simple harmonic motion.

x(t)= A cos (wt + ¢)
k
The angular frequency, w = \/% and the
constant angle ¢ is called the phase
constant (or initial phase angle) and, along

Simplifying this expression gives wT = 21
orT =2m/w.

, The velocity,
frequency f of the motion. il
v="_=—wAsin(wt + ¢)
=2m/T dt
The acceleration,
T =2n/w=2nVm/k d*x

_ .2
Frequency, f =1/T = 1/2n /_k/m a= di = w“Acos(wt + @)

rf
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s Energy of the Simple Harmonic Oscillator
Simple Harmonic Motion or SHM is defined as a motion in which the restoring force is directly proportional to the
displacement of the body from its mean position. The system that performs simple harmonic motion is called the

harmonic oscillator.

Case 1: The potential energy is zero, and the Kkinetic energy is maximum at the equilibrium point where zero displacement

takes place.

Case 2: The potential energy is maximum, and the Kinetic energy is zero, at a maximum displacement point from the
equilibpium point.

: The motion of the oscillating body has different values of potential and kinetic energy at other points.

Consider a particle of mass m, executing linear simple harmonic motion with angular frequency(w) and amplitude(A).

x = Asin(wt + ¢) and

dx

UZE:

% (Asin(ot+¢))=Ancos(ot+o).






Kinetic Energy of a Particle in Simple Harmonic Motion 80

Kinetic Energy = 3mv? |Since, v? = A%w?cos? (wt + ¢)]
= ymw?A2cos? (wt + ¢)
1

E =Total energy - mw?A?
. Kinetic Energy = $mw?A%cos® (wt + ¢) 2
PE
Potential Energy of Simple Harmonic Motion
Work done by the restoring force while displacing the particle from the mean
position (x = 0) tox = x: KE ¢

fig. (PE-KE-t) graph
The work done by restoring force when the particle has been displaced from the

pDSitiDn x to x + dxis gi‘u’en by Variation of kinetic energy and potential energy in SHM with displacement:
@ev
E (total energy)

dw = F dx = -kx dx

w:fdw:g‘—kmdm:%“’z

_ m{‘ézmz |
[k = mw?| :
— _mwTi A2sin? (wt + ¢) v, . | KE (Parabolic)

X=A X=0 X=+A

: PE (Parabolic)

Potential Energy = -(work done by restoring force)

2.2

Potential Energy = 5~ = m;“lz sin? (wt + @)

Wwmw 2
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The total energy of the system of a block and a spring is equal to the sum of the potential energy
stored in the spring plus the kinetic energy of the block.
ETotaI:K'I_U

Erota = %kﬂgcosﬂ (wt + ) + %mﬂgﬁsinz (wt + )

— %kﬂgc{]sﬂ (wt + ) + %kflgsing (wt + @)
— %k}lﬂ (cos? (wt + ¢) + sin® (wt + ¢))

_ 1742

= kA%

The total energy of the system of a block and a spring is equal to the sum of the potential en-
ergy stored in the spring plus the kinetic energy of the block and 1s proportional to the square

of the amplitude Eruta = (1/2) kA%, The total energy of the system is constant.




Problem 01

A 200-g block connected to a light spring for which the force constant is 5.00 N/m is free to oscillate on a frictionless,
horizontal surface. The block is displaced 5.00 cm from equilibrium and released from rest as in Figure 15.6.

(A) Find the period of its motion.

Solution:
_ _ |k _ 500 N/m
the angular frequency of the @ =4[ = \/200 X 10 kg 5.00 rad/s
2 2
1 the period of the system: r==2 1 = 1.26s

©  5.00rad/s

14

82
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Problem 02

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-
zontal air track.

(A) Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

I 200 N/m
boax — A — A= 0.030 0 = 0. |
v, —A 0.500 kg ( m ) 190 m/s

16



When 8 is small, a simple

The simple Pendulum kot i e

modeled as simple harmonic
It consists of a particle-like bob of mass m suspended by  motion about the equilibrium

a light string of length L that is fixed at the upper end as posmo',‘,_o -
shown in Fig. Newton’s second law for motion: |
d ‘ - 'f
F; = ma;, — —mg sin ) = 'H’IF: Because s = [§ :‘7)'
d*f g . d?0 Nz
F - = E sinf/ Or, F = — fﬂ (for small values of #) L %
_ _ . . . | % m
0 = 0. cOSl@wt+ ), 0., is the maximum angular position ™~ ~*5zing
8
and the angular frequencywis  _ [£ l)\mzcoso
L —

T="—=2

w

The period of the motion is 9ar L
- /_
g

17
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Problem 03 85

Christian Huygens (1629-1695), the greatest clockmaker in history, suggested that an international unit of length
could be defined as the length of a simple pendulum having a period of exactly 1 s. How much shorter would our
length unit be if his suggestion had been followed?

T‘.’ 4 2
§= (1.00s) (9.§Om/s) — 0948 m
47 47-

Problem 04

| —

LLEARIES What if Huygens had been born on another planetz What would the value for g have to be on that planet
such that the meter based on Huygens’s pendulum would have the same value as our meter?

47l 4mw*(1.00 m) . , ,
o = 47 m/s' = 395 m/s’
g T2 (1.00 s)* Sl e b

No planet in our solar system has an acceleration due to gravity that large.

18



Forced Oscillations

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, F(t) = F,sin wi, where [ is a constant

The solution of this equation is rather lensthv and
will not be presented. x = A cos (wi + (,‘-[)J
B F,/m —
= " where @y = VEk/ m

e o (U”;‘)- + —
The dramatic increase in amplitude near the natural
frequency is called resonance, and the natural
o is also called the resonance frequency
of the system.

m

When the frequency @ of

the driving force equals the
natural frequency @, of the
oscillator, resonance occurs.

I

1 b= 1)
" Undamped

Small &
/

_lLarge b

b — — — ____T___ —_——
-
)|

w

80
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+» Forced oscillations:

Forced oscillations occur when an oscillating system is driven by a periodic force that is external to the oscillating
system.

s Undamped Oscillation:
When the frictional dissipation of energy is neglected, the motion is said to be undamped oscillation.
¢ What is resonance:

When the frequency of an externally applied periodic force of a body is equal to the natural frequency of this body
then the body readily begins to vibrate or free to vibrate with an increased amplitude. This phenomenon is known
as resonance.

In 1940, turbulent winds set up torsional vibrations in the Tacoma Narrows Bridge, causing it to oscillate at a
ency near one of the natural frequencies
idge’s collapse. (Mathematicians and physicists are currently challenging some aspects of this interpretation.)



Problem 05

A simple harmonic oscillator can be described by x = 0.3 sin (wz + @) m. It has a mass of 30
kg and a force constant of 480 N.m-1, Also, x =0.2 mat timet=0.1s. >Find
the maximum mechanical energy of the oscillator,
(b) the potential energy and kinetic energy when the displacement is 0.2 m,
(c) the angular frequency of the oscillation,

(d) the initial phase of the displacement.

88
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Problem 05

A simple harmonic oscillator can be described by x = 0.3 sin (wt + @) m. It has a mass of 30
kg and a force constant of 480 N.m1, Also, x =0.2 mat time t=0.1s. >Find

(a) the maximum mechanical energy of the oscillator,

(b) the potential energy and kinetic energy when the displacement is 0.2 m,

(c) the angular frequency of the oscillation,

(d) the initial phase of the displacement.
maximum 1 1
(@)  mechanicall = ZkA®? = = x 480x 0.3% = 21.6J
2 2
energy
.
(b) pote”“a’} Lixe = lx 480x0.22 =9.67 and Knetic] 1,2 1,2 516 _9.6-12.0
energy energy 2
W = \/7 1||"48 = 4 rad.s™!
X = A-sin(mt + a)
0.2 = 0.3-sin(4x0.1+a)
(d sin(0.4+a) 0-2 _ 1.666
0.3

0.4+a=0.73 rad
a=0.33 rad
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Problem 06: A particle oscillating along a straight line in a simple harmonic motion has amplitude 0.05 m .The time period

n is 12 second. calculate maximum speed and acceleration

roblem 07: The maximum velocity of a particle executing simple harmonic motion is 6.24 cm per second. if the
mplitude of the particle is 3 cm what is its time period

Problem 08: An object is in simple harmonic motion has amplitude 0.01 m and a frequency 12 Hz. calculate its velocity at

displacement of 0.005 m.

Problem 09: Body of mass 50 gm is attached with on end of the spring and his allowed to oscillate in SHM. The amplitude

of the motion is712 cm and time period is 1.70s.Calculate the (i) frequency (ii) Spring constant (iii) maximum velocity of

the body (iv{ts maximum acceleration (v) speed when displacement is 6 cm and (vi)acceleration when x is equal to 6 cm.
Problem A0: A simple pendulum of effective length on 1 meter completes 2 oscillations per second. what is the magnitude
f acceleration due to gravity

oblém 11: Find the length of a second pendulum at the acceleration due to gravity is 9.8 ms 2

em 12: The maximum velocity of a particle executing simple harmonic motion is 0.2 cm per second if its amplitude
04 cm. then what is its time period

13: Length of the thread of simple pendulum is 98 cm and its time period 2 second calculate the radius of the bob
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What is Stress?

ress is defined as force per unit area within materials that arise from externally applied forces, uneven heating, or
permanent deformation and that permits an accurate description and prediction of elastic, plastic, and fluid behavior.

F

Stress is given by the following formula: o=~

where o is the stress applied, F is the force applied, and A is the area of the force application.
The unit of stress is N/m?,

«»  What is Strain?

Strain js the amount of deformation experienced by the body in the direction of force applied, divided by the initial
dimensions of the body.

following equation gives the relation for deformation in terms of the length of a solid:

6l
€ _ —

L
where ¢ is the strain due to the stress applied, ol is the change in length and L is the original length of the material.

The strain is a dimensionless quantity as it just defines the relative change in shape.
¢ Elasticity

phy3|cs and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its
inal size and shape when that influence or force is removed.
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s Explaining Stress-Strain Graph

We can learn about the elastic properties of materials by studying the stress-strain relationships, under different loads,

In these materials.

In a stress-strain curve, the stress and its corresponding strain values are plotted. An example of a stress-strain curve is

given below.

Elastic limit/

— el r Breaking
/ Yield point

stress

Proportional Lower-yield
limit point

E

Fracture
point

Stress —»

Hooke's law

Plastic Region

Elastic Region |||

| Strain —»
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The different regions in the stress-strain diagram are:

(i) Proportional Limit
It is the region in the stress-strain curve that obeys Hooke’s Law. In this limit, the stress-strain ratio gives us a

proportionality constant known as Young’s modulus. The point OA in the graph represents the proportional limit.

(i) Elastic Limit

It is the point in the graph up to which the material returns to its original position when the load acting on it is
completely removed. Beyond this limit, the material doesn’t return to its original position, and a plastic
defofmation starts to appear in it.

i) Yield Point

The yield point is defined as the point at which the material starts to deform plastically. After the yield point is
passed, permanent plastic deformation occurs. There are two yield points (i) upper yield point (ii) lower yield
point.

(iv) Ultimate Stress Point

It is a point that represents the maximum stress that a material can endure before failure. Beyond this point, failure
occurs.

(v) Fracture or Breaking Point

It is the point in the stress-strain curve at which the failure of the material takes place.



Hooke’s law: 96

Within the elastic limit, stress is directly proportional to strain.

Stress o< Strain

Stress = FE x Strain _ Lh;;m‘:)ut by
Stress i ch the length
F = — ) T | ofthe bar changes
Strain : *;r-g:} due to the applied

F' is a constant called the modulus of elasticity. There are three types of modulus:

~ H‘—— force is AL.

Young’s modulus:

When the force is applied to the body only along a particular direction, the change
per unit length in that direction is called longitudinal. Within the elastic limit, the ratio
of normal stress to longitudinal strain is called Young’s modulus.

. . . Normal stress _ FL
Yﬂll]]g S l'ﬂDdlllllh., Y = Lonitudinal strain Al

tl~f=ln

Bulk modulus:

When the force is applied normally and uniformly to the whole surface of the body,
so that there is a change of volume. Within the elastic limit, the ratio of normal stress

to volume strain is called Bulk modulug-

Bulk modulus, K = Nermalstress 3 _ £V _ PV
B Volwme strain v Aw Y

/ | The shear
. . . . == L 4 stress causes
Modulus of rigidity: 7 | theront
3 2 cover of the
book o move
to the right
relative to the
| back cover.

When the tangential force is applied to the body, a change in the inclinations of the
coordinate axes of the system or the body occur in geometrically. Within the elastic
limit, the ratio of tangential stress to shearing strain is called Modulus of rigidity.

-F Fixed
face




Tangential stress 3 _  F
Shearing strain 8 Ad

Modulus of rigidity, n =

Work done for longitudinal strain:

Consider a wire of length L, area of cross-section A and Young's modulus of elasticit:
Y. Let [ be the increase in length when a force F'is applied.

Therefore, Work done
!
/ dWW = / Fdl
0

We know, ¥ = %

vyl
So, F'= +f
Now,

. YA [!
W = —L/nzdz

Y Al?

oL
1 YAl
= ()
()

1
= —Fli
2
Work done per unit volume,

W W

vV AL
bal 1F 1

2AL 2AL

1
— 5 x Stress x Strain

w =




Work done for volume strain: 98

Consider a cube of volume V', area of cross-section A and length L. When a normal
stress P is applied, the change in volume is v.

Therefore, Work done
/dIfV = / Pdv
0

We know. K = £Y and P = £
3 A

Av
K
SD, PZ?
Now,
K N
W = —/ vdv
Voo
K2

2V

1 Kv
27
1

5 Puv




Work done per unit volume,

W
i —
Lr
_ Pe_1lv
2V 2AV
1

= 5 x Stress x Strain

Work done for shearing strain:

Consider a cube of side L. When a tangential force F' is applied to the upper face of
the cube, the cube is sheared through an angle #. If the tangential stress is T, then

T
=g
T = nb
F
1 = nt
F = nhA

Total tangential force, F' = A

Therefore, Work done
g
/ dW = / Fdl
0

Shearing strain, df = % So, dl = Ldf
Now,

99



W = / ’ n0ALdo 100

0

0
— pAL f 0do
0

nALbG*
2

Work done per unit volume,

wow
vV AL
nAL6* 1
= = — 8
2AL 2

1
— 100 x0
'

1
— 2T%
2

1
= 3 X Stress X Strain




Lateral strain:

Whenever a body is subjected to a force in a particular direction, there is change in

dimensions of the body in the other two perpendicular directions, This is called lateral
strain.

Poisson’s ratio:

Let a be the longitudinal strain per unit stress and g the lateral strain per unit
stress. Within the elastic limit,

g x «
B = o«
i

i

g = 2
a

o is called Poisson’s ratio. So poisson’s ratio is the ratio of lateral strain per unit
stress to the longitudinal strain per unit stress.

Maximum value of poisson’s ratio:

Consider a wire of length L and diameter D. The wire is fixed at one end and a
force is applied at the other end. Consequently the length of the wire increases and the

diameter of the wire decreases.
\

101



Increase in length = dL

Decrease in diameter = —dD 102
So,

E

o

dD

__D

dL
L

- () (5)

[f the volume of the wire remains unchanged after the force has been applied.
Initial volume of the wire, V = %

Differentiating this equation, we can write

AV = g[D?dLHLDdD]

D?*dL +2LDdD = 0

D2l = —2LDdD
dD Ly 1
aL ) “\D) T 2
1
(T — —_
2

This is the maximum possible value of poisson’s ratio.




1. Explain the relationship between stress and strain in the context of elastic modulus.

How would you calculate the elastic modulus for a material given a stress-strain graph?

2. Why do you think understanding the elastic modulus of materials is essential for designing safe
structures like bridges or skyscrapers? Share an example where this property might have a significant
impact.

3. Using a tensile testing machine, demonstrate how to measure the elastic modulus of a metal rod. Record
the stress and strain values and plot a graph to determine the modulus.

» Cognitive Domain (Understanding and Applying)

Question:
Explain the relationship between stress and strain in the context of elastic modulus. How
would you calculate the elastic modulus for a material given a stress-strain graph?

Purpose:
This question evaluates students' understanding of the concept and their ability to apply
knowledge to interpret data.

103
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Affective Domain (Valuing and Responding)

Question:

Why do you think understanding the elastic modulus of materials is essential for designing safe structures like
bridges or skyscrapers? Share an example where this property might have a significant impact.

Purpose:

This question assesses students' ability to recognize the importance of the concept in real-world applications
and reflect on its significance.

Psychiomotor Domain (Practical Application)

Ing a tensile testing machine, demonstrate how to measure the elastic modulus of a metal rod. Record the
ress and strain values and plot a graph to determine the modulus.

urpose:
his hands-on task evaluates students' ability to perform an experiment, collect data, and interpret the results
curately.



Table 12.1 Typical Values for Elastic Moduli

Young's Modulus Shear Modulus Bulk Modulus
Substance (N/m?) (N/m?) (N/m?)
Tungsten 35 x 1019 14 x 100 20 x 1010
Steel 20 x 1019 8.4 x 100 6 x 1019
Copper 11 x 109 4.2 x 10" 14 x 10"
Brass 0.1 x 10" 3.5 x 10" 6.1 x 10"
Aluminum 7.0 X 1010 2.5 x 1010 7.0 x 1010
Glass 6.5-7.8 x 1019 2.6-3.2 x 100 5.0-5.5 x 1019
Quartz 5.6 x 1019 2.6 x 1010 2.7 x 1010
Water — — 0.21 x 10"
Mercury — — 2.8 x 10"

105
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Now suppose the tension in the cable is 940 N as the actor reaches the lowest point. What dianJetQ6
should a 10-m-long steel cable have if we do not want it to stretch more than 0.50 cm under these

conditions? (y=20 x 101° N/m?)

Solution : Assuming cross-section is circular, find the diameter of the cable from d = 2r and 4 = nr?:

A= L, - [A | FL, (940 N)(10 m)

g |

| (f:hJ:_.—ZQW‘_.‘;:a—' Y (
YAL N7 Va¥YAL “V #(20 x 10" N/m?)(0.005 0 m)

roblem 15.

A 'solid brass/sphere is initially surrounded by air, and the air pressure exerted on it is 1.0x 10° N/m?(normal atmospheric

e sphere is lowered into the ocean to a depth where the pressure is 2.0 x 107 N/m?. The volume of the sphere in air

is 050 m#. By how much does this volume change once the sphere is submerged ?. Here Bulk Modulus = 6.1 x 101° N/m?

VAP (0.50 m*)(2.0 X 10" N/m® — 1.0 X 10° N/m?) _ —1.6 X 1074 m?
L 6.1 X 10" N/m®
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Now suppose the tension in the cable is 940 N as the actor reaches the
lowest point. What diameter should a 10-m-long steel cable have if we do
not want it to stretch more than 0.50 cm under these conditions? (y=20 X
1019 N/m?)




108

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is
1.0x 10> N/m?(normal atmospheric pressure). The sphere is lowered into the ocean
to a depth where the pressure is 2.0 x 107 N/m?. The volume of the sphere in air is
0.50 m3. By how much does this volume change once the sphere is submerged ?.
Here Bulk Modulus = 6.1 x 10° N/m?
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GRAVITATION
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A NEW PREFACE BY CHARLES W. MISNER AND KIP S. THORNE




+» Newton’s Law of Universal Gravitation

Every particle in the Universe attracts every other particle with a
force that is directly proportional to the product of their masses
and inversely proportional to the square of the distance between
them. If the particles have masses m1 and m2 and are separated by

a distance r, the magnitude of this gravitational force is

_ mim,
g G R2

where G is a constant, called the universal gravitational constant.

Its value in Sl unit e 5 5
G =6.674 X 107" N - m?/kg?

LANCC
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Free-Fall Acceleration and the Gravitational Force

Mgzm Planetary perspective
mg = G R£2 .ﬂ'IE'm r=u A‘r |
E F.=mg F=¢
- g R 2
oM E
4 REE

Now consider an object of mass m located a distance

. Planet X ,
h above the Earth’s surface or a distance r from the ' Planet X
Earth’s center, where r = Rg+ h. The magnitude of

Mgm Mgm
F,=G—F= G- -
r (Rg + h)




Problem 16.
Using the known radius of the Earth and that g =9.80

m/s? at the Earth’s surface, find the average density of
the Earth.

g Rg
(>

_JWE_EHEEJIG_r. g
PE = N T iaRE  YTGR:

M E —

0.80 m/s°
w(6.674 X 107" N-m*/kg*)(6.37 X 10°m)

-
- 3

= 5.50 x 10* kg/m®

113

Free-Fall Acceleration g
at Various Altitudes
Above the Earth’s Surface

Altitude h (km) 2 (m/s?
1 000 7.33
2000 5.68
3000 4.53
4000 3.70
5000 3.08
6 000 2.60
7000 2.23
8 000 1.93
9 000 1.69
10 000 1.49
50 000 0.13

o0 0
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Analysis Model: Particle in a Field (Gravitational)

Gravitational field » 4

. | b, 22442
L, K oM RN 22 22T
8~ T 2 r ’/I\‘  AAAAA;

)

radially outward from the Earth (a) The gravitational field vectors in the
vicinity of a uniform spherical mass such as

that the field points toward the
center of the Earth as illustrated
in Figure a.

magnitude. (b) The gravitational field
vectors in a small region near the Earth’s
surface are uniform in both direction and
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The International Space Station operates at an altitude of 350 km. Plans for the final construction show
that material of weight 4.22 x 10° N, measured at the Earth’s surface, will have been lifted off the
surface by various spacecraft during the construction process. What is the weight of the space station

when in orbite

. b
fe 422X lOEN _ 431 X 10°kg
g 9.80m/s
. GMg
~ (Re+ h)®
(6.674 X 107" N - m*/kg®)(5.97 x 10* kg)
" (637 X 10°Fm + 0.350 X 10°m)?

m —

g

= 8.82m/s"

F,= mg = (4.31 X 10°kg)(8.82 m/s*) = 3.80 X 10°N



% Kepler’s Laws and the Motion of Planets .

O Kepler’s First Law: K

¢ Sun
All planets move in elliptical orbits with the Sun at one |

\
% .1'!_1.

focus. “.

O Kepler’s Second Law:

_ _ The area swept out by r in
The radius vector is drawn from the Sun to a planet sweeps 2 this friteread ot Tade st
area of the parallelogram.

out equal areas in equal time intervals.

. . —
Evaluanne L for the nlanet.
— —3

L=fXp=M7rxVv - L=M|¥ xV
dA =3|¥ X d¥| =37F x Vdi| =3|F x ¥|di

dA = { L )m
- ﬂ'ff_,_

dA L

At 2M, where [ and MF are both constants.




0 Kepler’s Third Law: 117
The square of the orbital period of any planet is proportional to

the cube of the semimajor axis of the elliptical orbit.

(;J‘IISJ‘I_, U-_;: ff
F,=Ma — = M, |— [
- f r-;. P r I‘
|
\
\
’ - \
(14'1'1_\' - (Eﬂ"?' I )- \\\
rr r ~-
4??.2 where K is a constant given by
T'“? — ({1 v )TJ — Kq?_ﬁ 4,”;'
vl - r < ”y o 3 3
*iMl g Ks= oM.~ 297 X 107"s*/m
Problem 18.

Calculate the mass of the Sun, notfing that the period of the Earth’s orbit around the Sun
is 3.156 x 107 s and ifs distance from the Sunis 1.496 x 1011 m.

47 471%(1.496 X 10" m)? -
GT?  (6.674 X 107" N-m?/kg?)(3.156 x 107s)?

M = 1.99 x 10% kg
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s Energy Considerations in Planetary and Satellite Motion 119

nched from the earth to revolve around it. So, the energy required by a satellite to revolve around the earth is

alled its orbiting energy. Since this satellite revolves around the earth, it has kinetic energy and potential energy . The total

nergy of the satellite is calculated as the sum of the kinetic energy and the potential energy given by,

Total energy ,E = kinetic energy (K) + potential energy (U)

otential Energy of Satellite: As a particle of mass m moves from A to B above the
Earth’s surface, the gravitational potential energy of the
particle—Earth system changes according to Equation:

s GMzm
AU= U - U= —[ F(7) dr F(r)= -—

7.&

r

- 177
U — U= GMgm ' 3 = GMEm[—j]

J, ?

L

1 1 .
L} - L"; = - C;AW'[E”Z (_ — —.) Taklng Ui = 0 at 1; = 00, we
¥y % obtain the important result

GMgm
-

Lr(r) —_—




Kinetic Energy of Satellite: 1 2 O

The two forces are acting on it are gravitational force, Fg and a centripetal force due to its velocity, F.

m.
Where F, = and F. — muv’r.

2

The magnitude of the forces is equal.

So, Fy = F,

2
V2 GM(]}
T
1 2
We know that K. F. = Emv

Putting the value of VE ineq(l1), we get,

GMm

K.E. of a satellite =
2r
Total Energy of Satellite

The total energy of the satellite is calculated as the sum of the kinetic energy and the potential energy, given
byi

TE. = K.E. + PE.

- GMm GMm
- 2r r
G N
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% Escape Velocity :
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from

the/earth’s gravitational field.

\/
0’0

erivation of Escape Velocity :

uppose we have a sphere planet with radius R and mass M. And, a body of mass m is thrown from point A on the

arth’s surface. Let’s join OA and draw it further. Consider two points, P and Q, with distance x and (x + dx) from the

K.E.= —mv,?
N@w, supposethe minimum velocity re,... .. <. ___ape from the Earth’s surface is v,. Then, the kinetic energy of the
assmis GMm ~ _:_Q
,the work done to take the body fdW =F dx = <2 dX yitational force is given by o] |

alculate the total work done to take the body from the surface of the Earth to infinite
ravitational attraction by integrating the equation within limits: x = R to x = 00.
total work done is

|¢—I—t|
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For the object to escape from the Earth’s surface, the kinetic energy given must be equal to

(0.0)
f dw - foo GMm dx the work done against gravity going from the Earth’'s surface to infinity.
R B R x2
K.E.=W
GMm foo X—Z dx Now, let’s substitute the value of Kinetic Energy and work done against the earth’s gravity.
R
- K.E.= W
X |0
GMm |—| ¢ 1, GMm
- or, —mvy  =———
2 R
(1] oo 1 1
- GMm -] = -GMm ———] 2GM
x| R © R Ve= |7

Since we know acceleration due to gravity is given by

GMm g =—

" R2

R ve =,/2gR




»* Escape Speed K

As the object is projected upward from the surface of the Earth,
;andr =1; =R . When the object reaches its maximum

f f max B i
L2 - SEm GV Lettingr._.. — % Vesc — '\f i
Fmy; — RE - T & "max -Hf \

TIIIH.K

] Problem-19:

Calculate the escape speed from the Earth for a 5 000-kg object is spacecraft and

determine the kinetic energy it must have at the Earth’s surface to move
infinitely far away from the Earth.

» Solution:
[2GM [2(6.674 X 107" N - m2/k 97 X 10** k
R e T o ol e, B i 8) — 112 x 10 m/s
="\ Rg \ 6.37 X 10°m
K=smul, = 3(5.00 X 10°kg)(1.12 X 10*m/s)® = 313 x 10"]
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* What is Fluid dynamics: 126
' hysical chemistry, and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes
uids—Iliquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics.

> /Assumpiions of ideal fluid flow :

The motion of real fluids is very complex and not fully understood, we make some simplifying assumptions

injour approach. In our simplification model of ideal fluid flow, we make the following four assumptions:

1., The fluid is nonviscous.
In a nonviscous fluid, internal friction is neglected. An object moving through the fluid experiences

D Viscous force.
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¢ Describe The continuity equation

The continuity equation is a fundamental principle in physics that expresses the conservation of mass for a fluid
or a current flowing in a given system. It states that the rate at which mass enters or leaves a specified volume of
the system is equal to the rate of change of mass within that volume, taking into account any sources or sinks of

mass within the volume.
The continuity equation can be mathematically expressed as follows:

op/ot+V Apv) =0

p/ot 1s the rate of change of mass density (p) with respect to time (t).

V is the del operator, representing the gradient in three-dimensional space.

(pv) is the mass flux density, which is the product of mass density (p) and the velocity vector (v) of the fluid

r current.






s» Pascal’s law:

change in the pressure applied to a fluid is transmitted undiminished to every

oint of the fluid and to the walls of ttF; Ax; = F5 Axs,

the work done by F;on the input piston equals the work done by F, on the output

piston.

20-Example: In a car lift, compressed air exerts a force on a small piston that has

a circular gross section of radius 5.00 cm. This pressure is transmitted by a liquid
0 a piston that has a radius of 15.0 cm. (A) What force must the compressed air

lift a car weighing 13 300 N? (B) What air pressure produces this force?
A, 7(5.00 X 107* m)?

Fl e S FQ . —9 9
7(15.0 X 107* m)?

Aqg

-

F. 1.48 ¥ 10° N
p=-L= —— = 1.88 X 10°Pa
Ay w(5.00 X 107" m)*

Because the increase in
pressure is the same on
the two sides, a small
force F, at the left
produces a much greater
force F; at the right.

129

(1.83 x 10*'N) = 148 X 1(0°® N

Ax,



130

% Pressure Measurements: Torricelli experiment TR[P=°
A long tube closed at one end is filled with mercury and then h

inverted into a dish of mercury (Fig.). The closed end of the tube &

is nearly a vacuum, so the pressure at the top of the mercury y y ;;'

column can be taken as zero. In Figure, the pressure at point A,

due to the column of mercury, must equal the pressure at point

B, due to the atmosphere. If that were not the case, there would

be a net force that would move mercury from one point to the

other until equilibrium is established. Therefore, P =hpg, where p
Is the density of the mercury and h is the height of the mercury column.

Let us determine the height of a mercury column for one atmosphere of pressure

P, 1.013 x 10° Pa

B, = h = h= — = , — = (0.760 m
0~ Prg8 Prgg  (13.6 X 10° kg/m”)(9.80 m/s°)




< Buoyant Force and Archimedes’ Principle: 13 1

The upward force exerted by a fluid on any immersed object is called a
buoyant force. The magnitude of the buoyant force on an object always equals

the \weight of the fluid displaced by the object. This statement is known as Archimedes’ principle

** |Pressure:

Pressure If F is the magnitude of the force exerted on the piston and A is the surface area of the Ad:e“:;’tfi“;‘;“f;’::ef;feii:d°;

iston, the pressure P of the fluid at the level to which the device has been submerged is defined as $ff$‘j‘f,}‘,{;§'§;;§‘ff““‘”° e
the ratio of the forCe to the area: The Sl unit of pressure is the pascal (Pa): p = g B
21%Example: /The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep. (A) ‘

”
Find the wgight of the water in the mattress. (B) Find the pressure exerted by the water bed on the } <~
floop} Solution: (A) V= (2.00 m)(2.00 m)(0.300 m) = 1.20 m* I
Mg = (1.20 X 10° kg)(9.80 m/s*) = LI8 X 10N M = pV = (1 000 kg/m*)(1.20 m%) = 1.20 x 10% kg
1.18 X 10*N
(B) P= = 294 x 10*Pa

4.00 m*?
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» State the Bernoulli’s principle:

The equation is given bj-,.-':|

Bernoulli's equation is a principle in fluid dynamics that describes the conservation of energy in a
fluid flow. It states that in a streamline flow, the sum of the pressure energy, kinetic energy, and

potential energy per unit volume remains constant.

1
P+ Epfuz + pgh = constant

where:
e P = pressure of the fluid,
o = density of the fluid,

o v = velocity of the fluid,

* g = acceleration due to gravity,

 h = height above a reference point.

In this equation:

1. P represents the pressure energy,

2. %p’uz represents the kinetic energy per unit volume, and

3. pgh represents the potential energy per unit volume due to height.

Bernoulli's equation applies to incompressible

streamline.

L

~n-viscous fluids and assumes steady flow along :

133
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+» Derivation of Bernoulli’s equation :

Consider a pipe with varying diameter and height through which an incompressible fluid is flowing. The
relationship between the areas of cross-sections A, the flow speed v, height from the ground y, and pressure p at

two different points 1 and 2 are given in the figure below.

Flow



Assumptions:

* The density of the incompressible fluid remains constant at both points. 135
e The energy of the fluid is conserved as there are no viscous forces in the fluid.

Therefore, the work done on the fluid is given as:
dW = Fidx; — Fodxs

dw = ppﬂqd)(] - pgﬂugdxz

dwW = pidv — podv = (p; — p2)dv

We know that the work done on the fluid was due to the conservation of change in
gravitational potential energy and change in kinetic energy. The change in kinetic
energy of the fluid is given as:

dK = $movi — $mqv? = § pdu(vi — v?)

The change in potential energy is given as:

dU = mogy2 — migy; = pavg(yz = y1)

Therefore, the energy equation is given as:

dw = dK + dU

(p1 — p2)dv = § pdv(v3 — v3) + pdug(y2 — y1)

p1—p2) = 5p(v3 —v3) + pg(y2 — y1)

Rearranging the above equation, we get

P1+ $PVT + PgY1 = P2 + $PU5 + PGY>
This is Bernoulli's equation.
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Water flows through the pipes shown 1n FIGURE 15.32. The water’'s
speed through the lower pipe 1s 5.0 m/s and a pressure gauge reads
75 kPa. What is the reading of the pressure gauge on the upper

pipe?
Bernoulli’s equation @ |
| A . ¥
P2=P1 VPV — o PV2 T PR — PEY2 o B e o
: - ﬂ
=hT ;F’("l2 — )+ pg(y, —y2) 75 kPa Hoem

20m
6.0 am
VA =14, b @ l

2 2 = e

A, ry" (0.030 m)*
y = —, = —), = S.O[n/ =ll-25rn/
2T T T 0020my - :

The pressure at point 1 is p, = 75 kPa + T atm = 176,300 Pa.

We can now use the above expression for p2 to calculate:
P> = 103,900 Pa. p, = 105,900 Pa — 1 atm = 4.6 kPa

47
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alculate the pressure in the hose whose absolute pressure is 1.01 x 10° N.m= if the speed of the water in the hose

creases from 1.96 m.s to 25.5 m.st. Assume that the flow is frictionless and density 103 kg.m-3

f.r,..-"'

Problem 02; 4

ater is flowing in a fire hose with a velocity of 1.0 m/s and a pressure of 200000 Pa. At the nozzle the pressure decreases to

atmospheric pressure (101300 Pa), there is no change in height. Use the Bernoulli equation to calculate the velocity of the
ater exiting/the nozzle. (Hint: The density of water is 1000 kg/m? and gravity g is 9.8 m/s2. Pay attention to units!)]

Problem 03:

Toug a refinery, fuel ethanol is flowing in a pipe at a velocity of 1 m/s and a pressure of 101300 Pa. The refinery needs the

et

pressure? Assume the velocity does not change. (Hint: Use the Bernoulli equation. The density of elhanoj_m_@ kg/m3 and
Y,

nol/to be at a pressure of 2 atm (202600 Pa) on a lower level. How far must the pipe drop in height in order to achieve this

gravi " g is 9.8 m/s2. Pay attention to units!) =)
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Electricity & Magnetism

e Electric Charge,
 Coulomb’s law,
e Electric Field,

e Calculation of the Electric Field
Strength,

* Adipolein an Electric Field,

e electric Flux and Gauss’s Law.
e Electric Potential (V),

e Relation between E &V,

* Electric Potential Energy,

e Capacitor and Capacitance.

49



Concents of Electric Charge: 141

—» :» g €4— & _5-7 4 j
&é’/ N 4__;’4? é_/:/ —— = ﬁy é?/—p

The Laws of Electric Charges:

* Opposite electric charges attract each other.
* Similar electric charges repel each other.

* Charged objects attract some neutral objects.



¢ Describe conductor, semiconductor, and insulator according to band theory
Band theory is a concept in solid-state physics that explains the behavior of electrons in materials based on their
energy levels. It categorizes materials into conductors, semiconductors, and insulators based on their electronic band

-,

structure.

>

(@)]

Ea Eg=0 eV Eg=0.1-3.0 eV Eg>3.0 eV

| - l
metal semiconductor insulator

and Structure: In conductors, the valence band and the conduction band overlap, allowing electrons to move
ely between them.

» Elactron Behavior: The overlap results in a large number of available energy states for electrons, facilitating their
ment in response to an electric field.

ctivity: Conductors have high electrical conductivity because electrons can easily flow in response to an

142






144

O Semiconductor:

Band Structure: Semiconductors have a small energy gap between the valence band and the conduction band.

Electron Behavior: At absolute zero temperature, semiconductors behave as insulators because all electrons are in the
valence band. However, at higher temperatures, some electrons gain enough energy to move to the conduction band.

> Conductivity: Semiconductors have moderate electrical conductivity, and their conductivity can be increased

significantly by doping with specific impurities or by applying an external voltage.

> An increase in temperature increases the conductivity of a semiconductor because more electrons will have enough

energy to move into the conduction band.

Band/Structure: The insulator conduction band lacks readily available electrons with a large energy gap between the
valgnce band and the conduction band.

lectron Behavior: At room temperature, or even at elevated temperatures, most electrons are unable to gain enough
rgy to move into the conduction band. Thus, insulators have very few free-charge carriers.

uctivity: Insulators have low electrical conductivity due to the lack of readily available electrons in the conduction
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s Coulomb’s Law:
Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of the

guantity of charge on the objects and inversely proportional to the square of the separation distance between the two charges.

In equation form, Coulomb's law can be written as F ° o F

1 q19; r
F =
4ire. d?

ymbol ﬁ Is a proportionality constant known as the Coulomb's law constant. The value of this constant is

dent upon the medium that the charged objects are immersed in. In the case of air, the value is approximately 9.0 x
*m2/Cz2,

rce acting between similar charge is repulsive and the force acting between opposite charge is attractive.



Problem-22: 146

What is the magnitude of the force of repulsion between two small spheres 1.0 m apart, if
each has a charge of 1.0 X 1072 C?

Solution
q,=qg,=10x107%C
r=10m
Fe=7?
_ kq,q,
E rt
(9.0 X 10° N-m%C?(1.0 X 10~ C)?
(1.0 m)?
Fe = 90X 10"SN

The magnitude of the force of repulsion is 9.0 X 10~ N, a very small force.

53
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O What Is an Electric Field?
n electric field is defined mathematically as a vector field that can be associated with each point in space, the force
er unit charge exerted on a positive test charge at rest at that point.
he formula of the electric field is given as,
E=F/Q
Where,

Is the electric field. F is the force. Q is the charge. :& g \?‘l\\‘ég/
ZINEARZ/NS

The electric field from an The electric field from an
isolated positive charge isolated negative charge

Field lines

Irection of the field is taken as the direction of the force which is exerted on the positive charge. The electric

radially outwards from the positive charge and radially towards the negative point charge.



148

% Explaining Electric field lines for a positive, negative, positive-positive, positive-
_ 4 N negative, and negative-negative charge
Electric field lines for a positive charge

1.0riginating from the Charge: Electric field lines for a positive charge originate from the charge
itself. They extend radially outward in all directions, spreading out like spokes on a wheel.
2|Pointing Away from the Charge: These field lines point away from the positive charge. This

indicates the direction a positive test charge placed at any point would experience a force if it were free

Positive Charge

move. In simplerterms, positive charges would be repelled if they were nearby.

Strength of

e Field: The density of the field lines represents the strength of the electric field. Near

positive gharge, where the field is strongest, the lines are closer together. As you move farther away,

ositive charge, following the inverse square law. This means that the strength of the electric

INishes with the square of the distance from the charge.



Explaining Electric field lines for a negative charge

1. Originating from the Charge: Similar to a positive charge, electric field
lines for a negative charge also originate from the charge itself.
However, they extend radially inward in all directions, rather than
outward.

2. Pointing Towards the Charge: The field lines around a negative charge
point inward, towards the charge. This indicates that a positive test

negative charge, where the field is strongest, the lines are closer
tpgether. As you move farther away, the lines become more spaced
ut, indicating weaker field strength.

Never Intersecting: Electric field lines around a negative charge, like
with a positive charge, never intersect. This means that at any point in
pace, the direction of the electric field is well-defined.

149
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Explaining Electric field lines for a positive-positive charge

A A A 4
13 [ | -«
B x Y Y[ d o A
Originating from Each Charge: Electric field lines originate from each positive R XX " | f £ AL A
charge. They extend radially outward from each charge, just as they would for a W, XXM T/ 1 %
single positive charge. e RN VHICT fo L =
v ~ \ | ]/ \ | { 4
een Field Lines: Since like charges repel each other, the electric ! + :
field lines from each positive charge repel each other as well. This results in the " .. "I // =
diverging as they move away from each charge. 4 ) L% .
| Field Pattern: The overall pattern of electric field lines resembles that a " \ " A
of two individual positive charges, with no intersection between their respective K | | e
lines. The lines are denser near each charge and become less dense as you = i J | \ T
A\ A J

move away from them.

irection of the Field: At any point between the two charges, the electric field
nes indicate the direction a positive test charge would experience a force if
ced there. The direction of the force would be away from both charges, due to
repulsion.



Electric field lines for a positive-negative charge

1. Originating from Each Charge: Electric field lines originate from
each charge. The positive charge emits lines that extend radially
outward, while the negative charge emits lines that extend radially

inward.

Convergence of Field Lines: Due to the attraction between opposite
charges,/the electric field lines from the positive and negative charges
converge towards each other. This is in contrast to the divergence seen
ith'like charges.

Direction of the Field: Between the positive and negative charges, the
ectric field lines indicate the direction a positive test charge would
xperience a force if placed there. The direction of the force would be
towards the negative charge and away from the positive charge, due to
the attraction and repulsion between opposite charges.
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.

Electric field lines for a negative-negative charge

Originating from Each Charge: Electric field lines originate from each negative
charge. Similar to a single negative charge, these lines extend radially inward in
all directions.

Repulsion Between Field Lines: Since like charges repel each other, the electric
field lines from each negative charge also repel each other. This results in the
field lines diverging as they move away from each charge.

Overall Field Pattern: The overall pattern of electric field lines resembles that
of two jndividual negative charges, with no intersection between their
respective field lines. The lines are denser near each charge and become less

\ dense/as you move away from them.

Direction of the Field: At any point between the two charges, the electric field
ines indicate the direction a negative test charge would experience a force if
.‘. ed there. The direction of the force would be away from both charges, due

‘ heir repulsion.
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Problem-23
What is the electric field 0.60 m away from a small sphere with a

A charge of 1.2 X 1078C

Sdlution:
r=0.60m
E=?
mZ
” (9.0 X 109N.—2) (1.2 x 1077)
E = - . =
12 (0.60 m)?
=3.0 X 10°N/C

E = 3.0 X 10°N/C [radially outward]
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Motion of a Charged Particle in a Uniform Electric Field
When a particle of charge_g and mass m is |4 . =

placed in an electric field E, the electric force
exerted on the chargeis g E. If that is the only

force exerted on the particle, it must be the net dv-0 v=—> |
according to the particle under a net force L8 d
F mah). Therefore,
FE q E =madh
i -
b, = qE/m




A uniform electric field E is directed along the x axis between parallel plates of charge
separated by a distance d as shown in Figure 23.23. A positive point charge g of mass m is
released from rest at a point @ next to the positive plate and accelerates to a point ® next to
the negative plate.

(A) Find the speed of the particle at ® by modeling it as a particle under constant

acceleration.
E— 8
Solution: |

u” = o7 + 2a(x,— x;) =0 + 2a(d — 0) = 2ad o .

J- v -

m -

58



m An electron enters the region of a uniform electric field as shown

in Figure 23.24, with v, = 3.00 X 10° m/s and E = 200 N/C. The
horizontal length of the plates is £ = 0.100 m.

(A) Find the acceleration of the electron while it is in the elec-

157

tric field. The electron undergoes a downward
acceleration (opposite E), and its motion
is parabolic while it is between the plates.
el
a, =
- m -

(1.60 X 107 C)(200 N/C)
- = —3.51 X 10"* m/s?
9.11 X 10 * kg i
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/4
Gauss’s Law
A general relationship between the net electric flux
When the charge is at the center
through a closed surface and the charge enclosed by of the sphere, the electric field is

everywhere normal to the surface

the Su I’faCe |S known ds GGUSS’S IGW and constant in magnitude.

The magnitude of the electric field everywhere on the £

surface of the sphereis E = k,q/r?>. Pl (s
surface “ '

The net flux through the gaussian surface is o )
- - k \ ’/

Oy = ng. dA = ngdA = EjgdA = (:zq) (4wtr?) +‘*/

q

q

= 4mk,q = —

eq €
Gauss’s law says that the net electric flux ®gthrough any closed gaussian

surface is equal to the net charge g;, inside the surface divided by €y:

¢E=3€§.d,z=qﬂ
€o

\\
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Simulation of




Electric Flux: 160

The number of field lines that

go through the area A, is the : :
/ U niform same as the number that go Unlform eIeCtrIC
through area A. fleld
electric field ,
enetrating a 1 Normal penetratlng an
P 5 2<\o area A whose
5 normal is at an

perpendicular
to the field. S e

A;

The total number of lines penetrating the surface is‘proportional to the product EA. This
product of the magnitude of the electric field and surface area perpendicular to the field is

=\

¢ angle Oto the

called the electric flux: [ Electric Flux Formula ]
Pp = EAcosf. _

When 8 =0 >>\ o Y

by = E4 ] o T
E = electric field § \;\4 = e
A= area of the surface T \ -
E= magnitude e
0= thegantgle between the electric field lines \\g‘
and the normal (perpendicular) to S

@ = flux of electric field through a closed cylindrical surface
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1T 1 11¢%

Flux through a closed surface

The net flux through the surface is

B
|

B
¢

leaving the surface, where the net
number means the number of lines

\

LN
Py |

1
\ABRLA. B\

o
-
W
-
o
—
- J
P
>
>
—

lines entering the surface. If more lines

are leaving than entering, the net flux is
positive. If more lines are entering than
leaving, the net flux is negative.

=38 EdR=G8E dA

The electric The electric The electric
where E, is the component normal to the i roush g i i

element is element is element is

S u rfa Ce . negative. Zero, positive.
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Problem-24: Determine the Total electric flux of a Cube y

Consider a uniform electric field E oriented
in the x direction in empty space. A cube of

as shown in Fig. Find the net electric flux

through the surface of the cube.
[ — [ S —
(I"'E:JE-dA —I—J E-dA

1 2

[ — —
J E-dA = J E(cos 180°) dA = —HJ dA = —FA = —E¢?
1

1 1

Find the net flux by
79 9 adding the flux over all
0 six faces:

i —_ —_> i ] 9
J E-dA = , E(cos 0°) dA = fJ dA = +EA = E€
2

Op= —F€C+EC+0+0+04+0=
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Assignment:

j" =

= |

-1,

d

1. Consider a plane surfacoe in a uniform electric field as in Fig., where d=2
C, find the magnitude of the electric field.

2. Find the electric flux through the plane surface shown in Fig. if 8= 60°,

entire area of the surface.



Deduce Coulomb’s law from Gauss’s law
From Gauss's Law

fl:‘-da=£ da=-9-
€0

Since E is constant at all points on the surface,
EA =+
£p ,
Surface area of sphere is A = 4mr* so,
E = =1
- 4megrd
For a point charge g’ at a distance r from charge q
force would be F = g'F or,
1 qq
s 4mwey rl

164
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“» Determine the electric field for a cylindrical symmetric charge distribution

Find the electric field a distance r from a Gaussian +
line of positive charge of infinite length = “&‘ o
Solution: E
! il — . . i (Iin A( { g{&
by = l E-dA = E } dA = EA = i = E =

Substitute the area A = 27r{

: | AL
E(27rf) = — K
0
E=-—2 = op 2
2TE€ L r



Electric Potential

Electric Energy

*Electric fields produce forces; forces do work

*Since the electric fields are doing work, they must have potential energy

*The amount of work done 1s the change in the potential energy
*The force can be calculated from the charge and the electric field

o
(/ L\ AL W=F'S F:(IE
A \S\ﬁ‘ AU=W=-Fs AUz
- —E

*[f the path or the electric field are not straight lines, dU =~qK.-ds
we can get the change in energy by integration
*Divide it into little steps of size ds
*Add up all the little steps

AU:—qIE‘ds

166

Graphical representations of the potential:

\

Potential graph  Equipotential surfaces

"V

. - -
e T -

— e T L T a T . AT
- s S e S T »

...........

Contour map Elevation graph

68



Potential Difference in a Uniform Electric Field

167

(a) When the electric field Eis directed downward, point B is at a lower electric
potential than point A. (b) A gravitational analog to the situation in (a).

* Potential difference
between two pointsin a

uniform electric field
B A

 The potential energy of the
charge—field system

When a positive charge moves

from point @ to point ®), the
electric potential energy of the
charge-field system decreases.

=)

When an object with mass moves

from point ® to point ®, the
gravitational potential energy of
the object-field system decreases.

®

————— D —————

o)
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mnw Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference = A

its terminals and establishes that

the terminals. A 12-V battery is connected between
two parallel plates as shown in Fig. The separation
between the plates is d = 0.30 cm, and we assume the
electric field between the plates to be uniform. Find

the magnitude of the electric field between the
plates.

Ve — Vil 12V
i . i — = 40X 3 T/
Solution: : d 030 X 102m  0X107W/m
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Moti f a Proton i Unif Electric Field
m otion of a Proton in a Uniform Electric Fie 1 e + 5

A proton is released from rest at point Ain a iy

uniform electric field that has a magnitude of TP ve="0
V/m. The proton undergoes a

in the direction of E. Find the speed of the proton
after completing the displacement. Solution:

I
) |
AK+ AU=10 or (%I‘HT_JL —_ 0] + eAV=10 _y_él‘?@
¥ =

e (—QPAV: "(—Qt’(—lfd) _ '{Qp['d — I_ 2N = 4 5
N m Y m N m

J

[2(1.6 X 107 C)(8.0 X 10*V)(0.50 m)

V= 4] = — 8 X IUE
\' 1.67 X 10 ¥ kg 5 m/s

71



Electric potential & Electric potential energy: (a) Charge g establishes an electric

1 2
A potential k,gy/ryo The potential energy of
exists at point Pdue to the pair of charges is
charge ¢,. given by k_41¢s/ rys.
v =
rlg /I// ql rlg //
pl-~" s
Vv, =k JL ;‘)
1 “No 2
3 D
§i 142
V="k 2 — U=k 2
C Nz

The potential energy of this

system of charges is given by
Equation 25.14.

-

T 7~
12,/ \
”
”s
d \
+ ;
\\“ \
-~ \
71 - X
Gs

—~—

fig =

The total potential energy of
the system of three charges
_— k,(m L0 fkqs)

ri2 Fis Fos

170
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m As shown in Fig.a, a charge ¢ = 2.00 uC is located at the origin and a

2
to these charges at the point P, whose coordinates are (4.00, 0) m. (B) Find the change

in potential energy of the system of two charges plus a third charge ¢ = 3.00 uC as

y y

Solution: (b) ]
—T» — —6.00 uC T — —6.00 uC .[_f — gSIrP
3.00m 3.00m . _ ,
l 200uC  p l 200 uC .00 uC AU= L} —Ui=gVp— 0
i—;,\—‘ — X ﬁ +— X
4" 4_‘ = (3.00 X 107 C)(—6.29 X 103 V)
<— 4.00m — 4.00m
~ = —1.89 x 1072]
Solution: (a) V, = k'(ﬂJrﬁ)
n N
; -6 B -6
V= (8.988 x 109N-mﬂ;c‘—*)(3'm£0131 © 4 2O C) = —6.20 X 10V
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mnle Electric Potential Due to a Dipole ¥
An electric dipole consists of two charges of equal oF
magnitude and opposite sign separated by a distance T
| R
is centered at the origin. (A) Calculate the electric + : —J —Xx

potential at naint P an the v axis. |iﬂ4__ﬂf_| ’I

' ( — | i

"[’:k'zl.':kr( / )] 0 L] / -)[ -l): O i 1

L Va* + y° Va* + y.

(B) Calculate the electric notential at noint R on the positive x axis.
, 4. = q i
V Tl =— + = i
R=k E T, A'( ) X

x—a x+a .

Y
e S a~

(C) Calculate V and E, at a point on the x axis far from the dipole.

2k qa 2k, qa dV d [ 2kga
Vi = lim (— &l ) 2P (x>>a) E,.= = ——(— q)

i I } - T, L}
x* — a’ x” dx dx X

X = Tm

74
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Definition of Capacitor and Capacitance . . coor s s o

conductors carry charges of equal

Consider two conductors as shown in Fig. Such a  magnide and opposite sign.

conductors are called plates. If the conductors carry charges
equal magnitude and opposite sign, a potential

Experiments show that the quantity of charge Q on a

capacitor is linearly proportional to the potential difference
Q x AV @
Q
= CAV nC=——
¢ AV

A capacitor consists of

Where, the proportionality constant depends on the shape
two conductors.

and separation of the conductors and is capacitance. The S|



Calculating Capacitance
The calculation is relatively easy if the geometry of the

capacitor is simple.
Parallel-Plate Capacitors

Two parallel, metallic plates of equal area A are
separated by a distance d as shown in Fig. One plate

The value of the electric field between the plates is

E = ;Q.Z The magnitude of the potential difference
between the plates = Ed.
Qd
ZAV=Ed= ——
E()A
Q Q €od

C = - = —
AV~ Qd/egA ~ d

174

When the capacitor is connected
to the terminals of a battery,
electrons transfer between the
plates and the wires so that the
plates become charged.
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Combinations of Capacitors: Parallel Combination

. A pictorial A circuit diagram A drcuit diagram
p gra ag
From Flg representation of two showing the two showing the equivalent
1 2 capacitors connected in capacitors connected capacitance of the
parallel to a battery in parallel to a battery capacitors in parallel
Cy |
Qtotal = Q1+ Q2
- - | L&
1 1 2 2 A
. . +Q - 4
The equivalent capacitor AV 1
_ Cs I
Qtotal = Cee{kV - Ceq=Cy+ Gy
eq 1 1 2 2 ] - =
= CeV =C AV +C AV +Q fLe ~2 Qs
eq 1 2 ‘

& —
For parallel: T e J*_ +I=_

eq 1 2 3 = | jav AV AV

77



Combinations of Capacitors: Series Combination

Series A pictorial A circuit diagram
. . representation of two showing the two
combination of capacitors connected in capacitors connected
series to a bauery in series 10 a batery
Fig. .
. “ Cy ( (
AV, AV, ‘1 2
wow W
We know AV, AV,
+0 -0 +0 -0
Tot N N N -
Q@ — A
— + AV AV
C1 (2
We know

AVTot: CL Q Q1 QZ 1 1 1

eq LT ="+ = = — | e
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A circuit diagram
showing the equivalent
capacitance of the
capacitors in series




Problem-25
Find the equivalent capacitance between a and
b for the combination capacitances are in
microfarads.

C,=C + Cy=4.0puF
Coqg = C, + C3 = 8.0 yF
I 1 | 1 1 1

Coi G Cy 40uF  40uF 20 4F Coqg = 2.0 uF

1 1 1 1 ] |
= + — —
C.. C @ € 80 pF  80uF  40pF C.,q 4.0 uF

9

Coq = Cy + C3 = 6.0 uF



. . . . Dielectric 1 7 8
Capacitors with Dielectrics /
A dielectric is a nonconducting

material such as rubber, glass, or

capacitor that without a dielectric has
o and a capacitance (. The

% 4y Co=

capacitoris Al =
Co %)

If a dielectric is now inserted between the plates as in Fig.b, the voltmeter indicates
that the voltage between the plates decreases to a value AV. The voltages with and

0
dielectric constant k > 1. The new capacitance:
_Q _ _Q _ ; Qo _ _ g, €04 _ fd
C_AV_AVO/k_kAVO_kCO_k d [as Co= 7 7]



Approximate Dielectric Constants

Table 26.1

Material Dielectric Constant
Air (dry) 1.000 59
Bakelite 4.9
Fused quartz 3.78
Mylar 3.2
Neoprene rubber 6.7
Nylon 34
Paper 3.7
Paraffin-impregnated paper 3.5
Polystyrene 2.56
Polyvinyl chloride 3.4
Porcelain 6

Pyrex glass 5.6
Silicone oil 2.5
Strontium titanate 233

Teflon 2.1
Vacuum 1.000 00
Water 80

179
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Capacitors

» A capacitor Is a passive element that
stores energy In its electric field

» It consists of two conducting plates
separated by an insulator (or dielectric)

»” The plates are typically aluminum foil

» The dielectric is often air, ceramic, paper,
plastic, or mica

ed

Dielectric with permittivity €

<

Metal plates,
each with area A

R




» When a voltage source v Is connected to the capacitor,
the source deposits a positive charge g on one plate
and a negative charge —q on the other.

» The charges will be equal in magnitude
» The amount of charge is proportional to the voltage:

. q=Cv
» Where C Is the capacitance
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Inductors

An inductor is made of a coil of conducting wire

|<7Length, ¢ —*I

Cross-sectional area, A

¥

Core material

Number of turns, N
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Inductors

The relation between the flux In inductor and the current
through the inductor is given below.

(p j— Ll +—>
do di
= —— = —L—
YT T dt v L

An inductor Is a passive element designed to store
energy In the magnetic field while a capacitor stores
energy In the electric field.
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LC Circuit

LC circuit has a combination of a pure inductor with zero resistance and
a pure capacitor with infinite resistance

As usual we start with an 1dealised situation where we assume that the resistance
in the circuit is negligible. This is analogous to the assumption for mechanical
systems that there are no frictional forces present. Initially, the switch is open and
the capacitor 1s charged to voltage V. The charge ¢ on the capacitor 1s given
by ¢ = VcC where C is the capacitance. When the switch is closed the charge
begins to flow through the inductor and a current / = dg/dr flows in the circuit.
This 1s a time-varying current and produces a voltage across the inductor given
by V; = LdI/dt. We can analyse the LC circuit using Kirchhoff’s law, which
states that ‘the sum of the voltages around the circuit 1s zero’, 1.e. Vo + Vp = 0.
Therefore

1+12=0

dZ
=>§2-L—L?%=O 2
=>gjt2=-zq=-w q
= — tw?q=0




LC Circuit

This equation describes how the charge on a plate of the capacitor varies with time.
[t 1s of the same form as Equation (1.6) and represents SHM. The frequency of the
oscillation is given directly by, w = /I1/LC. Since we have the initial condition
that the charge on the capacitor has its maximum value at t = 0, then the solution
to Equation (1.54) 1s ¢ = g cos wt, where ¢ 1s the initial charge on the capacitor.
The variation of charge ¢ with respect to ¢ 1s shown in Figure 1.22 and 1s analogous
to the way the displacement of a mass on a spring varies with time.

q

N




LC Circuit

We can also consider the energy of this electrical oscillator. The energy stored
in a capacitor charged to voltage V¢ 1s equal to %C VCZ. This 1s electrostatic energy.
The energy stored in an inductor is equal to %L! > and this is magnetic energy.
Thus the total energy in the circuit is given by

] l g
E=—-LI"+-—
/ PR e

For these electrical oscillations the charge flows between the plates of the capac-
itor and through the inductor, so that there is a continuous exchange between
electrostatic and magnetic energy.




v/

10t Week

. e

Topic: Electricity Dielectrics and Topic Related
& Magnetism: piezoelectricity, Math
Kirchhoff's Current
Law (KCL),

Kirchhoff's Voltage
Law (KVL), Topic
Related problems,

Page: 187- 195



189

Piezoelectricity
¢ Piezoelectricity is the ability of certain materials to generate an electrical charge in response to applied
mechanical stress. This effect occurs because the material's internal structure lacks a center of symmetry,

allowing mechanical deformation to create an electric polarization .

» Direct Piezoelectric Effect: When mechanical stress (compression, tension, or vibration) is applied to a

piezoelectric material, it generates an electric charge. This means that mechanical energy is directly

onverted into electrical energy.

> Reverse Piezoelectric Effect: When an electric field or voltage is applied to a piezoelectric material, it
undergoes a mechanical deformation (expansion or contraction). In this case, electrical energy is directly

converted into mechanical energy.
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Dielectric materials:

Dielectric materials are insulating substances that do not conduct electricity but can support electrostatic fields. They are
characterized by their ability to be polarized in the presence of an electric field, meaning their positive and negative charges
shift slightly, aligning with the field. This property makes them essential in various electrical and electronic applications.

Key Properties of Dielectric Materials:

1,Permittivity (s,):

1. The measure of a material's ability to permit electric field lines. Higher permittivity means better dielectric properties.

2. Relativé permittivity (g,), or the dielectric constant, is the ratio of the material's permittivity to that of free space (g, \ ).

2.Polarizabfity:m

measure of the energy lost as heat within the dielectric when subjected to an alternating electric field.
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Types of Dielectric Materials:

1.Polar Dielectrics:
1. Molecules have permanent electric dipole moments (e.g., water, certain polymers).
2. Polarization increases with the applied field and aligns in its direction.
2.Non-Polar Dielectrics:

1. Molecules do not have permanent dipoles but can be polarized when an external field is applied

(e.g., gases like nitrogen or solid materials like polyethylene).
3.50lid Dielectrics:
1. Examples include ceramics, glass, and polymers, often used in capacitors and insulators.
4.Liquid Dielectrics:
1. Examples include transformer oil, used in high-voltage applications.
5.Gas Dielectrics:

1. Examples include air, SFe, and nitrogen, used as insulation in high-voltage equipment.
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Applications:

1.Capacitors: Dielectrics store electrical
energy by enhancing the capacitance.
2.Insulators: Prevent current flow between
conductive parts.

3.Electrostatic Applications: Used in sensors
and actuators.

4. Transformers: Liquid dielectrics provide

insulation and cooling.
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Kirchhoff's Voltage Law (KVL):

KVL states that the sum of all voltages in a closed loop of a circuit is equal to zero. This law is based

on the principle of energy conservation.

Where:

+ V] represents the voltage across each element in the loop.

¢ n is the number of elements in the loop.

Explanation:

¢ As a charge moves around a closed loop, the energy gained (from sources like batteries) and the

energy lost (due to resistances, for example) must balance.
+ \oltages across components can be positive (rise) or negative (drop), depending on the

direction of traversal.

Example:

In a loop containing a resistor (), a voltage source (V}), and a current (I):

Vi—IR=10
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Kirchhoff's Current Law (KCL):

KCL states that the sum of currents entering a junction (or node) in an electrical circuit is equal to the

sum of currents leaving the junction. This is based on the conservation of charge.

T

ZL;:()

i=1

Where:

» I, represents the current in each branch connected to the node.

Explanation:

* The total charge entering a junction must equal the total charge leaving it since there is no

charge accumulation at the node.

Example:

If three currents I, I, and I3 meet at a node:
I +1,— 13 =0
or

Ii=1,+1
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Applications of KVL and KCL.:
1.Circuit Analysis: Both laws are used in mesh analysis (KVL) and nodal analysis
(KCL) to solve for unknown currents and voltages.

2.Electrical Networks: Fundamental to understanding series and parallel circuits.

3.Design: Used in designing and analyzing complex electrical systems like power

grids, signal processing circuits, and electronic devices.
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Magnet :The earth is a large magnet.

X X X X
x X X X
Vectors into page

Vectors out of page

82
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Magnets & Magnetic Fields

Law of Magnetic Poles: Opposite magnetic poles attract. Similar magnetic poles repel.

N, Wy g™ )
7 8|/ 7 [ :

Magnetic force field the area around a magnet in which
magnetic forces are exerted

Principle of Electromagnetism: Moving electric charges produce a magnetic field.
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Right-Hand Rule for a Straight Conductor: —

If a conductor is grasped in the right P e i e e Y
hand, with the thumb pointing in the Fatesinl 3

: — L AT N N N T AY
fingers point in the direction of the < il <mm (E00
magnetic field lines. \\N~J V)V V) \_)

Let us define the magnetic field Rl il

Bas having the following — o

E.roaems&etic field is created at all points in space surrounding a current-carrying

wire.

call the magnetic field strength B, and a direction.
3. The magnetic field exerts forces on magnetic poles. The force on a north pole is

parallel to B; the force on a south pole is opposite B.
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magnetic field lines in its core.
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Magnetic Force on Moving Charges

The magnitude of thg magnetic force Frr (up)
Fy on a charged particle L =
* isdirectly proportional to the [ (to the right)

magnitude of the magnetic field B, A

the velocity B and the charge g of the B (into page)
 depends on thgangle 6 between the \\

magnetic field B and the velocity i, N f‘

Combining these factors gives

FM= quB sin 6



Problem-26

An electron accelerates from rest in a horizontally

directed electric field through a potential ¢ 9
electric field, entering a magnetic field of }8\ (; 5y
magnitude 0.20 T directed into the page '\;\/‘ ,:.
(a) Calculate the initial speed of the electron upon &
entering the magnetic field. R ®
(b) Calculate the magnitude and direction of the al
magnetic force on the electron.

Solution ~AE = AE
AV = 46V v=2 1 :
B=020T = 0.20 kg/C-s fa=2 V= mv
m, = 9.11 X 10~* kg (from Appendix C) [2gAV
g=16X10"2C TN Tm

203

N I3\ A

'\’2_(.-" A Y

5w, A\ v,
\f/‘ '\)f‘/' \5‘ ‘

Ty

7 '/"‘7\ '/"\.

\ x /' \.y ‘:/i X-/o

= v, A\

B® &® &

(b) Faya = gvBsin 6

Direction?
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Assignment

An electron moving through a uniform magnetic field with a velocity of

2.0 X 10° m/s [up] experiences a maximum magnetic force of 5.1 X

—14N [left]. Calculate the magnitude and direction of the magnetic
field.



Magnetic Force on a Conductor

Consider a conductor with a current /, placed in a
magnetic field of magnitude B. The force F on the

of the magnetic field B, to the current in the
conductor |, and to the length of the conductor £.

current) and the magnetic field lines is 8, the
of the magnetic force is directly
proportional to 6 . these

F = I¢B sinf

B is the magnitude of the magnetic field strength,
in teslas (T).
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//""N%' S :
force is down ; —/
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Right-Hand Rule for the Motor Principle

Another simple right-hand rule,

e
: ley
equivalent to the one for charges & @f/;&/
%
=z,
used to determine the relative ’;0,;.
F |, and B: Y
* If the right thumb points in the
direction of the current (flow of
positive charge), and the extended /A,
7K
magnetic field, the force is in the / force

direction in which the right palm s
direction of current
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* What is Magnetism

Is the force exerted by magnets when they attract or repel each other. Magnetism is caused by the motion of electric

Spin motion 4

b Spin magnetie
moment

+  mp Atomic magnefi
moment

x’f, N\ feeseessese Orbital magneic
. : (Orbital motion| B
Origin of magnetism \ P omen
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The Hall Effect (Contd.) 209

When the charge carriers are The charge carriers are no longer When the charge carriers are
negative, the upper edge of the deflected when the edges become positive, the upper edge of the
conductor becomes negatively sufficiently charged that there is a conductor becomes positively
charged and cis at a lower balance between the electric force and charged and cis at a higher
electric potential than a the magnetic force. potential than a.
v v . A8 w
B B
x = B o c s X x x x X * x x x | P X
- - = - - - RS + + _+
X X X X % X_ X Ix 7 I IR 7
i ‘quxg -1 Ak —> 774 xxﬁ‘ —/ ;
x| X qu—:, E: X tm EH vx * [“\
' q # q “ 77,
X 4% ¢ % o % X X % ix @ X[_% 2% X Vi SR @
aT & aT .:v)
e b4 x X . e ~ X’ X ™ ar KA o x » X
a D

A sensitive voltmeter connected across the sample as shown in Fig. (a & b) can
measure the potential difference, known as the Hall voltage, generated across the

92



The Hall Effect

When a current-carrying conductor is placed in a magnetic
field, a potential difference is generated in a direction
perpendicular to both the current and the magnetic field.
This phenomenon is known as the Hall effect. A flat
conductor carrying a current /in the x direction is shown in

Fig. A uniform magnetic field Bis applied in the y direction.
If the charge carriers are electrons moving in the negative
x direction with a drift velouty Vg, they experience an

upward magnetic force FB —quxB are deflected
upward, and accumulate at the upper edge of the flat
conductor, leaving an excess of positive charge at the
lower edge (Fig. a in next page). This accumulation of
charge at the edges establishes an electric field in the

Press | Esc I to exit full screen

210

L‘M’hen Iis in the x direction and
B in the y direction, both positive
and negative charge carriers are
deflected upward in the
magnetic field.

=
=t

conductor and increases until the electric force on carriers remaining in the bulk of
the conductor balances the magnetic force acting on the carriers.

\\




The Hall Effect (Contd.)

When the charge carriers are
negative, the upper edge of the
conductor becomes negatively
charged and cis at a lower
electric potential than a

The charge carriers are no longer
deflected when the edges become
sufficiently charged that there is a
balance between the electric force and
the magnetic force.

211

When the charge carriers are
positive, the upper edge of the
conductor becomes positively
charged and cis at a higher
potential than a.

B
x X X |
+.+_+.
x x x
' A"’H § I—> qV‘ X
[- Y X X x X
gEy

- [ .
T (p2s0]
d
X _ % _|x Jr”ﬂ?
2
X X X
i

A sensitive voltmeter connected across the sample as shown in Fig. (a & b) can
measure the potential difference, known as the Hall voltage, generated across the

conductor.

\\




Hall voltage 212

The magnetic force exerted on the carriers has magnitude gqv,B. In equilibrium,
this force is balanced by the electric force gE, where E is the magnitude of the
electric field due to the charge separation (sometimes referred to as the Hall field).
Therefore,

quB ZQEH :>EH :UdB
If d is the width of the conductor, the Hall voltage is e Ax
AVy = Eyd = vyBd \
The total charge AQin this segment is, AQ = (nd Ax)q = 1 Vel
(nAv,At)q, where n = the charge carrier density, g is the 11‘ g +—i>
charge on each carrier.
AQ td At
~ = Ar (nAvg)q = vgq = 1/nAq

IBd IBd  IB
AVy = = —— Where, tis the thickness of the conductor.

nAq n(td)qg ntq

\\







Assignment:

The accompanying table shows measurements of the
Hall voltage and corresponding magnetic field for a

data and deduce a relationship between the two
variables. (b) If the measurements were taken with a

material having a charge-carrier density of 1.00 X
26 carriers/m3 what is the thickness of the

sample?

AV (V) B(T)
0 (.00
11 0.10
19 (.20
28 0.30
42 (.40
50 0.50
bl (.60
68 (.70
79 0.80
00 .90
1092 1.0
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Example:

Consider a thin, straight wire of finite length carrying a
constant current / and placed along the x axis as shown in

magnetic field at point P due to this current.

ds Xt = |d¥ x t|k = [dxsin (% - 9)]& = (dx cos §)k

- -~ pol dxcosf - .. __a
(1) dB = (dB)k = Y k (2) 7 cos
adf
x= —atan @ (3) dx= —asec®fdf = — 3
cos”
ol ( ad 2 I
(4) dB = £ ( aig )(COSQB )cos() = £ cos f df
47 \cos" a- 4ma

~8,

' 4 3 I
B = —#—J cos @ df = =
4ma ly 41ma

(Sin 01 — sin 02)

96



s Types of Magnetism

Five basic types of magnetism
have been observed and classified
based on the magnetic behavior of

materials in response to magnetic

fields at different temperatures. |

These typesof magnetism are:

1. Ferromagnetism,
errimagnetism,
3./ Antiferromagnetism,
Paramagnetism, and

Diamagnetism.

2106

Magnetism Examples Magnetic behaviour
Diamagnetism Bi, Si, Cu, inert gases 00000 M AI/Z
0 O 0 O O [Atoms have no
Susceptibility small and [© © © O O |magnetic moments, H T
negative (<10 to - IOS)‘O OHO 00 — »
=0
4 PN
Paramagnetism Al, 02, MnBi | Atoms have randomly| A s Al//
\ - ’ \ ’ \ oriented magnetic :
Sus:lc:‘;')ub:l(;yss‘mall(l)q;;d ‘momcnls. . / .
positive ( 0 = el | £

Ferromagnetism

Fe, Ni, Co, Gd

Susceptibility large
(generally > 100)

'|have parallel aligned
'|magnetic moments,

Atoms are organized
in domains which

Antiferromagnetism Cr, MnO, FeO Atoms are organized
in domains which
Susceptibilty small and "f{"c antiparallel
positive (10 to 10 %) . aligned moments.
= ()

Ferrimagnetism Fe;0,, MnFe, 0y, * | Atoms are organized

NiFe;,0y |in domains which M M Ay

l l {have a mixture of /—
Susceptibility large lunequal antiparallel ﬁ I
(generally > 100) | H=0 aligned moments. 5

Figure 2.7: Different types of magnetism [56]
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AUERANENIN Paramagnetic

T perromagnetism
T l I H HH l Antiferromagnetic

T } T lTLTlTl Ferrimagnetism
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¢ Ferromagnetism

Ferromagnetism is a physical phenomenon whereby some materials, such as iron, attract one other aggressively. The
magnetic moments in a ferromagnet have the tendency to become aligned parallel to each other under the influence of a
magnetic field. Ferromagnetic materials exhibit parallel alignment of moments resulting in large net magnetization even in
the absence of a magnetic field. The elements Fe, Ni, and Co and many of their alloys are typical ferromaanetic materials.
Two distinct characteristics of ferromagnetic materials are them parallel align ment

(1) Spontaneous magnetization and the existence of A

IC ordering temperature (:) C) C:) CD

A

D Do b

aramagnetism Ferrom agnﬂtﬁm

paramagnet, the magnetic moments tend to be randomly orientated due to thermal fluctuations when there is no
etic field. In an applied magnetic field, these moments start to align parallel to the field such that the magnetization of

erial is proportional to the applied field.
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s Antiferromagnetism

Adjacent magnetic moments from the magnetic ions tend to align anti-parallel to each other without an applied field. In
the simplest case, adjacent magnetic moments are equal in magnitude and opposite therefore there is no overall
magnetization.

s Ferrimagnetism

The aligned magnetic moments are not of the same size; there is more than one type of magnetic ion. An overall

magnetization iS produced but not all the magnetic moments may give a positive contribution to the overall magnetization.

s+ Diamaghetism

magpetism is characterized by materials that correspond at right angles toward a non-uniform distribution magnetic
jeld and partially expel the magnetic field in which they have been positioned from their interiors. A diamagnetic

ance iIs one whose atoms have no permanent magnetic dipole moment.
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Magnetic domains

Magnetic domains are regions within a ferromagnetic or ferrimagnetic material where the magnetic moments of atoms are
aligned in the same direction, resulting in a local net magnetic field. These domains arise because of the guantum mechanical
exchange interactions between atoms, which favor parallel alignment of adjacent magnetic moments.

ey Features of Magnetic Domains

Aligned Magnetic Moments:

1. Within a single domain, all magnetic moments (spins of electrons) are aligned in the same direction, leading to a strong
local magnetic field.

.Domain Boundaries (Walls):
1. The regions separating different magnetic domains are called domain walls.
2. In thése walls, the magnetic moments gradually change orientation to minimize energy between adjacent domains.

ize and Shape:

omain size varies depending on the material, temperature, and magnetic field. Domains can range from nanometers to
micrometers.

1zing Energy:

The arrangement of domains minimizes the total magnetic energy of the material by balancing:

1. Exchange Energy: Prefers uniform alignment of moments.

2. Magnetostatic Energy: Prefers configurations with low external stray fields.

3. Anisotropy Energy: Depends on the crystal structure and easy axis of magnetization.
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Behavior of Magnetic Domains:

1.In the Absence of External Field:

1. Domains are randomly oriented, resulting in no net macroscopic magnetization (material
appears non-magnetic).
2.Under an External Magnetic Field:
1. Domains aligned with the field grow at the expense of others through domain wall movement

and rotation of moments.

2. This increases the net magnetization of the material.
3.Saturation Magnetization:
1. When all domains are fully aligned with the external magnetic field, the material reaches
saturation magnetization.
4.Hysteresis:
1. When the magnetic field is removed, some domains remain aligned, leading to residual

magnetization, which is the basis of magnetic memory in materials.
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A hysteresis loop is a graphical representation of the relationship between two interrelated physical quantities,

¢ Explain the Hysteresis loop.

where the response of one quantity to changes in the other exhibits a lagging or delayed effect.
The loop is generated by measuring the magnetic flux coming out from the ferromagnetic substance while changing the

external magnetizing field. If B is measured for various values of H and if the results are plotted in graphic forms, then the

c . B Flux Density
graph will show a hysteresis loop. s J
. atuaration
Retentivity | e’
—_— (b) % ’
7
Coercivity "(\
-H — H
Magnetizing Force Magnetizing Force

in opposite direction

Flux density
in opposite direction

Saturation
in opposite direction

Figure. 2.10 Hysteresis loop of magnetic materials [59].

-B

magnetic flux density (b) is increased when the magnetic field strength (h) is increased from 0 (zero).
an increase in the magnetic field, there is an increase in the value of magnetism, and it finally reaches point a, which

the saturation point where b is constant.
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With a decrease in the value of the magnetic field, there is a decrease in the value of the magnetism. But if B and H
are equal to zero, when a substance or material retains some amount of magnetism, it is called retentivity or residual
magnetism.

» When there is a decrease in the magnetic field towards the negative side, magnetism also decreases. At point c, the
substance’is completely demagnetized.

» The fdrce required to remove the retentivity of the material is known as Coercive force (c).

In/the opposite direction, the cycle is continued where the saturation point is d, the retentivity point is e, and the

oercive force is f.

e to the forward and opposite direction process, the cycle is complete, and this cycle is called the hysteresis loop.
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«»» Describe the Biot savart law:

1. Biot Savart law states that “ magnetic field due to a current-carrying conductor at a distance point is inversely proportional
to/ the square of the distance between the conductor and point, and the magnetic field is directly proportional to the length of

the conductor, current flowing in the conductor”. /
2l It can be mathematically expressed as: dB = £o 12Lomn? l\ dB
AT T A /
\ :
Derivation: \ 0 r
Consider a pointcharge P placed at a distance r from an infinitely small length of wire dl. -dll'
ector r makes an angle 6 from the direction of the current. ,,nl
ent flow into the wire the current along the wire can be expressed as: dB « | | f

It can @lso be observed that as we move away from wire toward P the magnetic field decreases. i.e dBocri2

Sincg 0 is the angle between r— and I.
0 the expression of magnetic field can be given as:

o« Idl sin®

IdLsin@
T‘Z

bining the equation we get, dB = K

IdLsin@
or dB=*%

4w 1r?
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The Magnetic Field of a Solenoid The magnetic fleld lines
] ] resemble those of a bar
If N is the number of turns in the length magnet, meaning that the

solenoid effectively has

£, the total current through the rectangle 1. i e ineraion pak et il il

this path gives

are ' It |
6§-d;=B€=MONI 0000000 ..[.....\ /\\,\\\:////’\

. 4] [ LT ,/<< )\,
The strength of the uniform magnetic #° ; »B =P,
i,g C' &2

field inside a solenoid is \ R

s

: > .
ol Seomemes /1 \ -
Bsolenotd = £ Honl ?‘i,lx};'f]ﬂf o e »i}."l}”(}[f s // i\ ke
wheren = N/¥ is the number of turns
per unit length.
Measurements that need a uniform magnetic field are often conducted inside a
solenoid, which can be built quite large.
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The right-hand rule for determining the direction of the magnetic L
field surrounding a long, straight wire carrying a current.
-
When the wire carries a strong A
current, the compass needles
When no current is present in the deflect in a direction tangent to
wire, all compass needles point in the circle, which is the direction _ )
the same direction (toward the of the magnetic field created by Ampere’s law: The line
Earth’s north pole). the current.

integral of B. d§ around any
f! closed path equals ugl, wher:
[ is the total steady current

oD || B <2 S passing through any surface
R @ o bounded by the closed path:
I=0 ds - ‘Llol
B.ds =B ® ds = ——(2nr) = ugl
| ¢ § ds =22 2 = g







Problem-27 232

A 1.0-m-long MRI solenoid generatesa 1.2 T
magnetic field. To produce such a large field, the

that can carry a 100 A current. How many turns
of wire does the solenoid need?
Solution:

IB (1.0m)Y1.27T)

ol (7 x 10 Tm/A)(100 A) |
Quick Quiz Consider a solenoid that is very long compared with its radius. Of the

following choices, what is the most effective way to increase the magnetic field in the
interior of the solenoid? (a) double its length, keeping the number of turns per unit

N = = 0500 turns

length constant (c) overwrap the entire solenoid with an additional layer of current-
carrying wire

99
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+» Maxwell's fundamental laws

Maxwell's fundamental laws, also known as Maxwell's equations, are a set of four fundamental equations in classical

electromagnetism that describe the behavior of electric and magnetic fields. The four Maxwell's equations are as follows:
1. Gauss's Law for Electricity:
V-E= P [ €0

'his equation relates the electric field (E) to the charge density (p) within a given region. It states that the total electric flux

nrough a closgd surface (given by the divergence of the electric field) is proportional to the total charge enclosed by that

o being the vacuum permittivity (electric constant).
2.\\ Gausg's Law for Magnetism:
B=0

uation relates the magnetic field (B) to the magnetic flux within a given region. Unlike electric charges, there are no
c monopoles (single magnetic charges) observed in nature. Therefore, the magnetic flux through any closed surface

Is always\zero, and there are no isolated magnetic poles. This is why the divergence of the magnetic field is zero.
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3. Faraday's Law of Electromagnetic Induction:
V x E = -0B/ot

This equation expresses how a time-varying magnetic field (B) induces an electric field (E). It states that the curl of
the electric field is equal to the negative rate of change of the magnetic field with respect to time. This law Is
fundamental to understanding electromagnetic induction, which is the basis for generating electric currents in coils

and transformers

4. Ampere's’Law with Maxwell's Addition:

V %B = ol + pogo OE/0t

This gquation describes the relationship between the magnetic field (B) and the electric current density (J) within a
region. It states that the curl of the magnetic field is proportional to the sum of the current density and the rate
hange of the electric field with respect to time. The term o represents the vacuum permeability (magnetic

tant).



For More Information
& Mathematical
Problems See the Book
. B.Sc Physics Volume -
1 by C.L Arora
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16 &17 " Week Topic: Review the whole Topic
of this Course







The End
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